Cargando…
In Silico Screening and Testing of FDA-Approved Small Molecules to Block SARS-CoV-2 Entry to the Host Cell by Inhibiting Spike Protein Cleavage
The COVID-19 pandemic began in 2019, but it is still active. The development of an effective vaccine reduced the number of deaths; however, a treatment is still needed. Here, we aimed to inhibit viral entry to the host cell by inhibiting spike (S) protein cleavage by several proteases. We developed...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231362/ https://www.ncbi.nlm.nih.gov/pubmed/35746605 http://dx.doi.org/10.3390/v14061129 |
Sumario: | The COVID-19 pandemic began in 2019, but it is still active. The development of an effective vaccine reduced the number of deaths; however, a treatment is still needed. Here, we aimed to inhibit viral entry to the host cell by inhibiting spike (S) protein cleavage by several proteases. We developed a computational pipeline to repurpose FDA-approved drugs to inhibit protease activity and thus prevent S protein cleavage. We tested some of our drug candidates and demonstrated a decrease in protease activity. We believe our pipeline will be beneficial in identifying a drug regimen for COVID-19 patients. |
---|