Cargando…

Alcohol-induced inhibition of bone formation and neovascularization contributes to the failure of fracture healing via the miR-19a-3p/FOXF2 axis

AIMS: Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. METHODS: MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p o...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Daoyu, Fang, Haoyu, Yu, Hongping, Liu, Pei, Yang, Qianhao, Luo, Pengbo, Zhang, Changqing, Gao, Youshui, Chen, Yi-Xuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The British Editorial Society of Bone & Joint Surgery 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233406/
https://www.ncbi.nlm.nih.gov/pubmed/35730670
http://dx.doi.org/10.1302/2046-3758.116.BJR-2021-0596.R1
Descripción
Sumario:AIMS: Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. METHODS: MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay. RESULTS: miR-19a-3p was identified as one of the key regulators in the osteogenic differentiation of BMSCs, and was found to be downregulated in the alcohol-fed mouse model of fracture healing. In vitro, miR-19a-3p expression was downregulated after ethanol administration in both BMSCs and HUVECs. Vascularization and osteogenic differentiation were independently suppressed by ethanol and reversed by miR-19a-3p. In addition, the luciferase reporter assay showed that FOXF2 is the direct binding target of miR-19a-3p. In vivo, miR-19a-3p agomir stimulated callus transformation and improved the alcohol-impaired fracture healing. CONCLUSION: This study is the first to demonstrate that the miR-19a-3p/FOXF2 axis has a pivotal role in alcohol-impaired fracture healing, and may be a potential therapeutic target. Cite this article: Bone Joint Res 2022;11(6):386–397.