Cargando…

Uncertainty quantification in variable selection for genetic fine-mapping using bayesian neural networks

In this paper, we propose a new approach for variable selection using a collection of Bayesian neural networks with a focus on quantifying uncertainty over which variables are selected. Motivated by fine-mapping applications in statistical genetics, we refer to our framework as an “ensemble of singl...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Wei, Ramachandran, Sohini, Crawford, Lorin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234235/
https://www.ncbi.nlm.nih.gov/pubmed/35769876
http://dx.doi.org/10.1016/j.isci.2022.104553