Cargando…
Uncertainty quantification in variable selection for genetic fine-mapping using bayesian neural networks
In this paper, we propose a new approach for variable selection using a collection of Bayesian neural networks with a focus on quantifying uncertainty over which variables are selected. Motivated by fine-mapping applications in statistical genetics, we refer to our framework as an “ensemble of singl...
Autores principales: | Cheng, Wei, Ramachandran, Sohini, Crawford, Lorin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234235/ https://www.ncbi.nlm.nih.gov/pubmed/35769876 http://dx.doi.org/10.1016/j.isci.2022.104553 |
Ejemplares similares
-
An introduction to Bayesian neural networks and uncertainty quantification in neural networks
por: Talpini, Jacopo
Publicado: (2023) -
Multi-scale inference of genetic trait architecture using biologically annotated neural networks
por: Demetci, Pinar, et al.
Publicado: (2021) -
Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
por: Bonnet, Djohan, et al.
Publicado: (2023) -
Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits
por: Cheng, Wei, et al.
Publicado: (2020) -
Uncertainty quantification for predictions of atomistic neural networks
por: Vazquez-Salazar, Luis Itza, et al.
Publicado: (2022)