SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
MOTIVATION: Predicting side effects of drug–drug interactions (DDIs) is an important task in pharmacology. The state-of-the-art methods for DDI prediction use hypergraph neural networks to learn latent representations of drugs and side effects to express high-order relationships among two interactin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235485/ https://www.ncbi.nlm.nih.gov/pubmed/35758803 http://dx.doi.org/10.1093/bioinformatics/btac250 |