Cargando…
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
MOTIVATION: Predicting side effects of drug–drug interactions (DDIs) is an important task in pharmacology. The state-of-the-art methods for DDI prediction use hypergraph neural networks to learn latent representations of drugs and side effects to express high-order relationships among two interactin...
Autores principales: | Nguyen, Duc Anh, Nguyen, Canh Hao, Petschner, Peter, Mamitsuka, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235485/ https://www.ncbi.nlm.nih.gov/pubmed/35758803 http://dx.doi.org/10.1093/bioinformatics/btac250 |
Ejemplares similares
-
Sparse and skew hashing of K-mers
por: Pibiri, Giulio Ermanno
Publicado: (2022) -
DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction
por: You, Ronghui, et al.
Publicado: (2022) -
From drug repositioning to target repositioning: prediction of therapeutic targets using genetically perturbed transcriptomic signatures
por: Namba, Satoko, et al.
Publicado: (2022) -
A graph neural network approach for molecule carcinogenicity prediction
por: Fradkin, Philip, et al.
Publicado: (2022) -
Phage–bacterial contig association prediction with a convolutional neural network
por: Tang, Tianqi, et al.
Publicado: (2022)