Cargando…
SPRISS: approximating frequent k-mers by sampling reads, and applications
MOTIVATION: The extraction of k-mers is a fundamental component in many complex analyses of large next-generation sequencing datasets, including reads classification in genomics and the characterization of RNA-seq datasets. The extraction of all k-mers and their frequencies is extremely demanding in...
Autores principales: | Santoro, Diego, Pellegrina, Leonardo, Comin, Matteo, Vandin, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237683/ https://www.ncbi.nlm.nih.gov/pubmed/35583271 http://dx.doi.org/10.1093/bioinformatics/btac180 |
Ejemplares similares
-
Theory of local k-mer selection with applications to long-read alignment
por: Shaw, Jim, et al.
Publicado: (2021) -
MetaCon: unsupervised clustering of metagenomic contigs with probabilistic k-mers statistics and coverage
por: Qian, Jia, et al.
Publicado: (2019) -
Indexing Arbitrary-Length k-Mers in Sequencing Reads
por: Kowalski, Tomasz, et al.
Publicado: (2015) -
Improved assembly of noisy long reads by k-mer validation
por: Carvalho, Antonio Bernardo, et al.
Publicado: (2016) -
Association mapping from sequencing reads using k-mers
por: Rahman, Atif, et al.
Publicado: (2018)