Cargando…

Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition

β-Lactamases hydrolyze β-lactam antibiotics and are major determinants of antibiotic resistance in Gram-negative pathogens. Enmetazobactam (formerly AAI101) and tazobactam are penicillanic acid sulfone (PAS) β-lactamase inhibitors that differ by an additional methyl group on the triazole ring of enm...

Descripción completa

Detalles Bibliográficos
Autores principales: Hinchliffe, Philip, Tooke, Catherine L., Bethel, Christopher R., Wang, Benlian, Arthur, Christopher, Heesom, Kate J., Shapiro, Stuart, Schlatzer, Daniela M., Papp-Wallace, Krisztina M., Bonomo, Robert A., Spencer, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239225/
https://www.ncbi.nlm.nih.gov/pubmed/35612361
http://dx.doi.org/10.1128/mbio.01793-21
_version_ 1784737250375892992
author Hinchliffe, Philip
Tooke, Catherine L.
Bethel, Christopher R.
Wang, Benlian
Arthur, Christopher
Heesom, Kate J.
Shapiro, Stuart
Schlatzer, Daniela M.
Papp-Wallace, Krisztina M.
Bonomo, Robert A.
Spencer, James
author_facet Hinchliffe, Philip
Tooke, Catherine L.
Bethel, Christopher R.
Wang, Benlian
Arthur, Christopher
Heesom, Kate J.
Shapiro, Stuart
Schlatzer, Daniela M.
Papp-Wallace, Krisztina M.
Bonomo, Robert A.
Spencer, James
author_sort Hinchliffe, Philip
collection PubMed
description β-Lactamases hydrolyze β-lactam antibiotics and are major determinants of antibiotic resistance in Gram-negative pathogens. Enmetazobactam (formerly AAI101) and tazobactam are penicillanic acid sulfone (PAS) β-lactamase inhibitors that differ by an additional methyl group on the triazole ring of enmetazobactam, rendering it zwitterionic. In this study, ultrahigh-resolution X-ray crystal structures and mass spectrometry revealed the mechanism of PAS inhibition of CTX-M-15, an extended-spectrum β-lactamase (ESBL) globally disseminated among Enterobacterales. CTX-M-15 crystals grown in the presence of enmetazobactam or tazobactam revealed loss of the Ser70 hydroxyl group and formation of a lysinoalanine cross-link between Lys73 and Ser70, two residues critical for catalysis. Moreover, the residue at position 70 undergoes epimerization, resulting in formation of a d-amino acid. Cocrystallization of enmetazobactam or tazobactam with CTX-M-15 with a Glu166Gln mutant revealed the same cross-link, indicating that this modification is not dependent on Glu166-catalyzed deacylation of the PAS-acylenzyme. A cocrystal structure of enmetazobactam with CTX-M-15 with a Lys73Ala mutation indicates that epimerization can occur without cross-link formation and positions the Ser70 Cβ closer to Lys73, likely facilitating formation of the Ser70-Lys73 cross-link. A crystal structure of a tazobactam-derived imine intermediate covalently linked to Ser70, obtained after 30 min of exposure of CTX-M-15 crystals to tazobactam, supports formation of an initial acylenzyme by PAS inhibitors on reaction with CTX-M-15. These data rationalize earlier results showing CTX-M-15 deactivation by PAS inhibitors to involve loss of protein mass, and they identify a distinct mechanism of β-lactamase inhibition by these agents.
format Online
Article
Text
id pubmed-9239225
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-92392252022-06-29 Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition Hinchliffe, Philip Tooke, Catherine L. Bethel, Christopher R. Wang, Benlian Arthur, Christopher Heesom, Kate J. Shapiro, Stuart Schlatzer, Daniela M. Papp-Wallace, Krisztina M. Bonomo, Robert A. Spencer, James mBio Research Article β-Lactamases hydrolyze β-lactam antibiotics and are major determinants of antibiotic resistance in Gram-negative pathogens. Enmetazobactam (formerly AAI101) and tazobactam are penicillanic acid sulfone (PAS) β-lactamase inhibitors that differ by an additional methyl group on the triazole ring of enmetazobactam, rendering it zwitterionic. In this study, ultrahigh-resolution X-ray crystal structures and mass spectrometry revealed the mechanism of PAS inhibition of CTX-M-15, an extended-spectrum β-lactamase (ESBL) globally disseminated among Enterobacterales. CTX-M-15 crystals grown in the presence of enmetazobactam or tazobactam revealed loss of the Ser70 hydroxyl group and formation of a lysinoalanine cross-link between Lys73 and Ser70, two residues critical for catalysis. Moreover, the residue at position 70 undergoes epimerization, resulting in formation of a d-amino acid. Cocrystallization of enmetazobactam or tazobactam with CTX-M-15 with a Glu166Gln mutant revealed the same cross-link, indicating that this modification is not dependent on Glu166-catalyzed deacylation of the PAS-acylenzyme. A cocrystal structure of enmetazobactam with CTX-M-15 with a Lys73Ala mutation indicates that epimerization can occur without cross-link formation and positions the Ser70 Cβ closer to Lys73, likely facilitating formation of the Ser70-Lys73 cross-link. A crystal structure of a tazobactam-derived imine intermediate covalently linked to Ser70, obtained after 30 min of exposure of CTX-M-15 crystals to tazobactam, supports formation of an initial acylenzyme by PAS inhibitors on reaction with CTX-M-15. These data rationalize earlier results showing CTX-M-15 deactivation by PAS inhibitors to involve loss of protein mass, and they identify a distinct mechanism of β-lactamase inhibition by these agents. American Society for Microbiology 2022-05-25 /pmc/articles/PMC9239225/ /pubmed/35612361 http://dx.doi.org/10.1128/mbio.01793-21 Text en Copyright © 2022 Hinchliffe et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Hinchliffe, Philip
Tooke, Catherine L.
Bethel, Christopher R.
Wang, Benlian
Arthur, Christopher
Heesom, Kate J.
Shapiro, Stuart
Schlatzer, Daniela M.
Papp-Wallace, Krisztina M.
Bonomo, Robert A.
Spencer, James
Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition
title Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition
title_full Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition
title_fullStr Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition
title_full_unstemmed Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition
title_short Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition
title_sort penicillanic acid sulfones inactivate the extended-spectrum β-lactamase ctx-m-15 through formation of a serine-lysine cross-link: an alternative mechanism of β-lactamase inhibition
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239225/
https://www.ncbi.nlm.nih.gov/pubmed/35612361
http://dx.doi.org/10.1128/mbio.01793-21
work_keys_str_mv AT hinchliffephilip penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT tookecatherinel penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT bethelchristopherr penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT wangbenlian penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT arthurchristopher penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT heesomkatej penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT shapirostuart penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT schlatzerdanielam penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT pappwallacekrisztinam penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT bonomoroberta penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition
AT spencerjames penicillanicacidsulfonesinactivatetheextendedspectrumblactamasectxm15throughformationofaserinelysinecrosslinkanalternativemechanismofblactamaseinhibition