Cargando…
Interpretable modeling of genotype–phenotype landscapes with state-of-the-art predictive power
Large-scale measurements linking genetic background to biological function have driven a need for models that can incorporate these data for reliable predictions and insight into the underlying biophysical system. Recent modeling efforts, however, prioritize predictive accuracy at the expense of mod...
Autores principales: | Tonner, Peter D., Pressman, Abe, Ross, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245639/ https://www.ncbi.nlm.nih.gov/pubmed/35733251 http://dx.doi.org/10.1073/pnas.2114021119 |
Ejemplares similares
-
The genotype‐phenotype landscape of an allosteric protein
por: Tack, Drew S, et al.
Publicado: (2021) -
The genotype‐phenotype landscape of an allosteric protein
por: Tack, Drew S, et al.
Publicado: (2021) -
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
por: Hozumi, Hideki, et al.
Publicado: (2023) -
Powerful gene-based testing by integrating long-range chromatin interactions and knockoff genotypes
por: Ma, Shiyang, et al.
Publicado: (2021) -
Interpreting Functional Impact of Genetic Variations by Network QTL for Genotype–Phenotype Association Study
por: Yuan, Kai, et al.
Publicado: (2022)