Cargando…

A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages

Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a su...

Descripción completa

Detalles Bibliográficos
Autores principales: Ekaputri, Stella, Choi, Eun-Kyung, Sabelli, Manuela, Aring, Luisa, Green, Kelsie J., Chang, JuOae, Bao, Kai, Choi, Hak Soo, Iwase, Shigeki, Kim, Jonghan, Corradini, Elena, Pietrangelo, Antonello, Burke, Martin D., Seo, Young Ah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245668/
https://www.ncbi.nlm.nih.gov/pubmed/35737834
http://dx.doi.org/10.1073/pnas.2121400119
_version_ 1784738794007691264
author Ekaputri, Stella
Choi, Eun-Kyung
Sabelli, Manuela
Aring, Luisa
Green, Kelsie J.
Chang, JuOae
Bao, Kai
Choi, Hak Soo
Iwase, Shigeki
Kim, Jonghan
Corradini, Elena
Pietrangelo, Antonello
Burke, Martin D.
Seo, Young Ah
author_facet Ekaputri, Stella
Choi, Eun-Kyung
Sabelli, Manuela
Aring, Luisa
Green, Kelsie J.
Chang, JuOae
Bao, Kai
Choi, Hak Soo
Iwase, Shigeki
Kim, Jonghan
Corradini, Elena
Pietrangelo, Antonello
Burke, Martin D.
Seo, Young Ah
author_sort Ekaputri, Stella
collection PubMed
description Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor–dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.
format Online
Article
Text
id pubmed-9245668
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-92456682022-07-01 A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages Ekaputri, Stella Choi, Eun-Kyung Sabelli, Manuela Aring, Luisa Green, Kelsie J. Chang, JuOae Bao, Kai Choi, Hak Soo Iwase, Shigeki Kim, Jonghan Corradini, Elena Pietrangelo, Antonello Burke, Martin D. Seo, Young Ah Proc Natl Acad Sci U S A Biological Sciences Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor–dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution. National Academy of Sciences 2022-06-22 2022-06-28 /pmc/articles/PMC9245668/ /pubmed/35737834 http://dx.doi.org/10.1073/pnas.2121400119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Ekaputri, Stella
Choi, Eun-Kyung
Sabelli, Manuela
Aring, Luisa
Green, Kelsie J.
Chang, JuOae
Bao, Kai
Choi, Hak Soo
Iwase, Shigeki
Kim, Jonghan
Corradini, Elena
Pietrangelo, Antonello
Burke, Martin D.
Seo, Young Ah
A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages
title A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages
title_full A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages
title_fullStr A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages
title_full_unstemmed A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages
title_short A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages
title_sort small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245668/
https://www.ncbi.nlm.nih.gov/pubmed/35737834
http://dx.doi.org/10.1073/pnas.2121400119
work_keys_str_mv AT ekaputristella asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT choieunkyung asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT sabellimanuela asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT aringluisa asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT greenkelsiej asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT changjuoae asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT baokai asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT choihaksoo asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT iwaseshigeki asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT kimjonghan asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT corradinielena asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT pietrangeloantonello asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT burkemartind asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT seoyoungah asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT ekaputristella smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT choieunkyung smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT sabellimanuela smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT aringluisa smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT greenkelsiej smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT changjuoae smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT baokai smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT choihaksoo smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT iwaseshigeki smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT kimjonghan smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT corradinielena smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT pietrangeloantonello smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT burkemartind smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages
AT seoyoungah smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages