Cargando…
A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages
Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a su...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245668/ https://www.ncbi.nlm.nih.gov/pubmed/35737834 http://dx.doi.org/10.1073/pnas.2121400119 |
_version_ | 1784738794007691264 |
---|---|
author | Ekaputri, Stella Choi, Eun-Kyung Sabelli, Manuela Aring, Luisa Green, Kelsie J. Chang, JuOae Bao, Kai Choi, Hak Soo Iwase, Shigeki Kim, Jonghan Corradini, Elena Pietrangelo, Antonello Burke, Martin D. Seo, Young Ah |
author_facet | Ekaputri, Stella Choi, Eun-Kyung Sabelli, Manuela Aring, Luisa Green, Kelsie J. Chang, JuOae Bao, Kai Choi, Hak Soo Iwase, Shigeki Kim, Jonghan Corradini, Elena Pietrangelo, Antonello Burke, Martin D. Seo, Young Ah |
author_sort | Ekaputri, Stella |
collection | PubMed |
description | Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor–dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution. |
format | Online Article Text |
id | pubmed-9245668 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-92456682022-07-01 A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages Ekaputri, Stella Choi, Eun-Kyung Sabelli, Manuela Aring, Luisa Green, Kelsie J. Chang, JuOae Bao, Kai Choi, Hak Soo Iwase, Shigeki Kim, Jonghan Corradini, Elena Pietrangelo, Antonello Burke, Martin D. Seo, Young Ah Proc Natl Acad Sci U S A Biological Sciences Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor–dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution. National Academy of Sciences 2022-06-22 2022-06-28 /pmc/articles/PMC9245668/ /pubmed/35737834 http://dx.doi.org/10.1073/pnas.2121400119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Ekaputri, Stella Choi, Eun-Kyung Sabelli, Manuela Aring, Luisa Green, Kelsie J. Chang, JuOae Bao, Kai Choi, Hak Soo Iwase, Shigeki Kim, Jonghan Corradini, Elena Pietrangelo, Antonello Burke, Martin D. Seo, Young Ah A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages |
title | A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages |
title_full | A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages |
title_fullStr | A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages |
title_full_unstemmed | A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages |
title_short | A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages |
title_sort | small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245668/ https://www.ncbi.nlm.nih.gov/pubmed/35737834 http://dx.doi.org/10.1073/pnas.2121400119 |
work_keys_str_mv | AT ekaputristella asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT choieunkyung asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT sabellimanuela asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT aringluisa asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT greenkelsiej asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT changjuoae asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT baokai asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT choihaksoo asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT iwaseshigeki asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT kimjonghan asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT corradinielena asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT pietrangeloantonello asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT burkemartind asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT seoyoungah asmallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT ekaputristella smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT choieunkyung smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT sabellimanuela smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT aringluisa smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT greenkelsiej smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT changjuoae smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT baokai smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT choihaksoo smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT iwaseshigeki smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT kimjonghan smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT corradinielena smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT pietrangeloantonello smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT burkemartind smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages AT seoyoungah smallmoleculeredistributesironinferroportindeficientmiceandpatientderivedprimarymacrophages |