Cargando…
Diagnostic Performance of Machine Learning Models Based on (18)F-FDG PET/CT Radiomic Features in the Classification of Solitary Pulmonary Nodules
OBJECTIVES: This study aimed to evaluate the ability of (18)fluorine-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features combined with machine learning methods to distinguish between benign and malignant solitary pulmonary nodules (SPN). METHODS...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Galenos Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246312/ https://www.ncbi.nlm.nih.gov/pubmed/35770958 http://dx.doi.org/10.4274/mirt.galenos.2021.43760 |