Cargando…
Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data
Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify h...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9248881/ https://www.ncbi.nlm.nih.gov/pubmed/35609992 http://dx.doi.org/10.1101/gr.272203.120 |
_version_ | 1784739449428508672 |
---|---|
author | Luo, Kaixuan Zhong, Jianling Safi, Alexias Hong, Linda K. Tewari, Alok K. Song, Lingyun Reddy, Timothy E. Ma, Li Crawford, Gregory E. Hartemink, Alexander J. |
author_facet | Luo, Kaixuan Zhong, Jianling Safi, Alexias Hong, Linda K. Tewari, Alok K. Song, Lingyun Reddy, Timothy E. Ma, Li Crawford, Gregory E. Hartemink, Alexander J. |
author_sort | Luo, Kaixuan |
collection | PubMed |
description | Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify how it changes across conditions. We developed TF occupancy profiler (TOP), a Bayesian hierarchical regression framework, to profile genome-wide quantitative occupancy of numerous TFs using data from a single chromatin accessibility experiment (DNase- or ATAC-seq). TOP is supervised, and its hierarchical structure allows it to predict the occupancy of any sequence-specific TF, even those never assayed with ChIP. We used TOP to profile the quantitative occupancy of hundreds of sequence-specific TFs at sites throughout the genome and examined how their occupancies changed in multiple contexts: in approximately 200 human cell types, through 12 h of exposure to different hormones, and across the genetic backgrounds of 70 individuals. TOP enables cost-effective exploration of quantitative changes in the landscape of TF binding. |
format | Online Article Text |
id | pubmed-9248881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92488812022-12-01 Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data Luo, Kaixuan Zhong, Jianling Safi, Alexias Hong, Linda K. Tewari, Alok K. Song, Lingyun Reddy, Timothy E. Ma, Li Crawford, Gregory E. Hartemink, Alexander J. Genome Res Method Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify how it changes across conditions. We developed TF occupancy profiler (TOP), a Bayesian hierarchical regression framework, to profile genome-wide quantitative occupancy of numerous TFs using data from a single chromatin accessibility experiment (DNase- or ATAC-seq). TOP is supervised, and its hierarchical structure allows it to predict the occupancy of any sequence-specific TF, even those never assayed with ChIP. We used TOP to profile the quantitative occupancy of hundreds of sequence-specific TFs at sites throughout the genome and examined how their occupancies changed in multiple contexts: in approximately 200 human cell types, through 12 h of exposure to different hormones, and across the genetic backgrounds of 70 individuals. TOP enables cost-effective exploration of quantitative changes in the landscape of TF binding. Cold Spring Harbor Laboratory Press 2022-06 /pmc/articles/PMC9248881/ /pubmed/35609992 http://dx.doi.org/10.1101/gr.272203.120 Text en © 2022 Luo et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Method Luo, Kaixuan Zhong, Jianling Safi, Alexias Hong, Linda K. Tewari, Alok K. Song, Lingyun Reddy, Timothy E. Ma, Li Crawford, Gregory E. Hartemink, Alexander J. Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data |
title | Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data |
title_full | Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data |
title_fullStr | Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data |
title_full_unstemmed | Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data |
title_short | Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data |
title_sort | profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9248881/ https://www.ncbi.nlm.nih.gov/pubmed/35609992 http://dx.doi.org/10.1101/gr.272203.120 |
work_keys_str_mv | AT luokaixuan profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT zhongjianling profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT safialexias profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT honglindak profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT tewarialokk profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT songlingyun profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT reddytimothye profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT mali profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT crawfordgregorye profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata AT harteminkalexanderj profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata |