Cargando…

Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data

Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify h...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Kaixuan, Zhong, Jianling, Safi, Alexias, Hong, Linda K., Tewari, Alok K., Song, Lingyun, Reddy, Timothy E., Ma, Li, Crawford, Gregory E., Hartemink, Alexander J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9248881/
https://www.ncbi.nlm.nih.gov/pubmed/35609992
http://dx.doi.org/10.1101/gr.272203.120
_version_ 1784739449428508672
author Luo, Kaixuan
Zhong, Jianling
Safi, Alexias
Hong, Linda K.
Tewari, Alok K.
Song, Lingyun
Reddy, Timothy E.
Ma, Li
Crawford, Gregory E.
Hartemink, Alexander J.
author_facet Luo, Kaixuan
Zhong, Jianling
Safi, Alexias
Hong, Linda K.
Tewari, Alok K.
Song, Lingyun
Reddy, Timothy E.
Ma, Li
Crawford, Gregory E.
Hartemink, Alexander J.
author_sort Luo, Kaixuan
collection PubMed
description Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify how it changes across conditions. We developed TF occupancy profiler (TOP), a Bayesian hierarchical regression framework, to profile genome-wide quantitative occupancy of numerous TFs using data from a single chromatin accessibility experiment (DNase- or ATAC-seq). TOP is supervised, and its hierarchical structure allows it to predict the occupancy of any sequence-specific TF, even those never assayed with ChIP. We used TOP to profile the quantitative occupancy of hundreds of sequence-specific TFs at sites throughout the genome and examined how their occupancies changed in multiple contexts: in approximately 200 human cell types, through 12 h of exposure to different hormones, and across the genetic backgrounds of 70 individuals. TOP enables cost-effective exploration of quantitative changes in the landscape of TF binding.
format Online
Article
Text
id pubmed-9248881
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-92488812022-12-01 Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data Luo, Kaixuan Zhong, Jianling Safi, Alexias Hong, Linda K. Tewari, Alok K. Song, Lingyun Reddy, Timothy E. Ma, Li Crawford, Gregory E. Hartemink, Alexander J. Genome Res Method Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify how it changes across conditions. We developed TF occupancy profiler (TOP), a Bayesian hierarchical regression framework, to profile genome-wide quantitative occupancy of numerous TFs using data from a single chromatin accessibility experiment (DNase- or ATAC-seq). TOP is supervised, and its hierarchical structure allows it to predict the occupancy of any sequence-specific TF, even those never assayed with ChIP. We used TOP to profile the quantitative occupancy of hundreds of sequence-specific TFs at sites throughout the genome and examined how their occupancies changed in multiple contexts: in approximately 200 human cell types, through 12 h of exposure to different hormones, and across the genetic backgrounds of 70 individuals. TOP enables cost-effective exploration of quantitative changes in the landscape of TF binding. Cold Spring Harbor Laboratory Press 2022-06 /pmc/articles/PMC9248881/ /pubmed/35609992 http://dx.doi.org/10.1101/gr.272203.120 Text en © 2022 Luo et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Method
Luo, Kaixuan
Zhong, Jianling
Safi, Alexias
Hong, Linda K.
Tewari, Alok K.
Song, Lingyun
Reddy, Timothy E.
Ma, Li
Crawford, Gregory E.
Hartemink, Alexander J.
Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data
title Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data
title_full Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data
title_fullStr Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data
title_full_unstemmed Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data
title_short Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data
title_sort profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9248881/
https://www.ncbi.nlm.nih.gov/pubmed/35609992
http://dx.doi.org/10.1101/gr.272203.120
work_keys_str_mv AT luokaixuan profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT zhongjianling profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT safialexias profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT honglindak profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT tewarialokk profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT songlingyun profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT reddytimothye profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT mali profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT crawfordgregorye profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata
AT harteminkalexanderj profilingthequantitativeoccupancyofmyriadtranscriptionfactorsacrossconditionsbymodelingchromatinaccessibilitydata