Cargando…
An Intelligent Fault Diagnosis Based on Adversarial Generating Module and Semi-supervised Convolutional Neural Network
Aiming at the existing problems in machinery monitoring data such as high cost of labeling and lack of typical failure samples, this paper launches a research on the semi-supervised-style intelligent fault diagnosis. Taking a great mount of unlabeled data and only a small quantity of labeled data as...
Autores principales: | Ye, Qing, Liu, Changhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249457/ https://www.ncbi.nlm.nih.gov/pubmed/35785063 http://dx.doi.org/10.1155/2022/1679836 |
Ejemplares similares
-
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset
por: Tang, Hongtao, et al.
Publicado: (2021) -
Diagnosis of Scoliosis Using Chest Radiographs with a Semi-Supervised Generative Adversarial Network
Publicado: (2022) -
Generative Adversarial Networks-Based Semi-Supervised Automatic Modulation Recognition for Cognitive Radio Networks
por: Li, Mingxuan, et al.
Publicado: (2018)