Cargando…

Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria

How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR...

Descripción completa

Detalles Bibliográficos
Autores principales: Travis, Brady A., Peck, Jared V., Salinas, Raul, Dopkins, Brandon, Lent, Nicholas, Nguyen, Viet D., Borgnia, Mario J., Brennan, Richard G., Schumacher, Maria A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249791/
https://www.ncbi.nlm.nih.gov/pubmed/35778410
http://dx.doi.org/10.1038/s41467-022-31573-0
_version_ 1784739665912266752
author Travis, Brady A.
Peck, Jared V.
Salinas, Raul
Dopkins, Brandon
Lent, Nicholas
Nguyen, Viet D.
Borgnia, Mario J.
Brennan, Richard G.
Schumacher, Maria A.
author_facet Travis, Brady A.
Peck, Jared V.
Salinas, Raul
Dopkins, Brandon
Lent, Nicholas
Nguyen, Viet D.
Borgnia, Mario J.
Brennan, Richard G.
Schumacher, Maria A.
author_sort Travis, Brady A.
collection PubMed
description How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation.
format Online
Article
Text
id pubmed-9249791
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92497912022-07-03 Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria Travis, Brady A. Peck, Jared V. Salinas, Raul Dopkins, Brandon Lent, Nicholas Nguyen, Viet D. Borgnia, Mario J. Brennan, Richard G. Schumacher, Maria A. Nat Commun Article How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation. Nature Publishing Group UK 2022-07-01 /pmc/articles/PMC9249791/ /pubmed/35778410 http://dx.doi.org/10.1038/s41467-022-31573-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Travis, Brady A.
Peck, Jared V.
Salinas, Raul
Dopkins, Brandon
Lent, Nicholas
Nguyen, Viet D.
Borgnia, Mario J.
Brennan, Richard G.
Schumacher, Maria A.
Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria
title Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria
title_full Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria
title_fullStr Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria
title_full_unstemmed Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria
title_short Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria
title_sort molecular dissection of the glutamine synthetase-glnr nitrogen regulatory circuitry in gram-positive bacteria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249791/
https://www.ncbi.nlm.nih.gov/pubmed/35778410
http://dx.doi.org/10.1038/s41467-022-31573-0
work_keys_str_mv AT travisbradya moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria
AT peckjaredv moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria
AT salinasraul moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria
AT dopkinsbrandon moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria
AT lentnicholas moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria
AT nguyenvietd moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria
AT borgniamarioj moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria
AT brennanrichardg moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria
AT schumachermariaa moleculardissectionoftheglutaminesynthetaseglnrnitrogenregulatorycircuitryingrampositivebacteria