Cargando…

Metabolomic and transcriptomic analyses reveal new insights into the role of abscisic acid in modulating mango fruit ripening

Mango (Mangifera indica L.) is a climacteric tropical fruit consumed around the world. Although ethylene and abscisic acid (ABA) have been considered to be stimulators that trigger mango fruit ripening, their regulation mechanisms in modulating mango fruit ripening remain uncertain. In this study, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Shibo, Wu, Di, Song, Juan, Zhang, Yanyu, Tan, Qing, Yang, Tianquan, Yang, Jingya, Wang, Songbiao, Xu, Jianchu, Xu, Wei, Liu, Aizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250656/
https://www.ncbi.nlm.nih.gov/pubmed/35795388
http://dx.doi.org/10.1093/hr/uhac102
Descripción
Sumario:Mango (Mangifera indica L.) is a climacteric tropical fruit consumed around the world. Although ethylene and abscisic acid (ABA) have been considered to be stimulators that trigger mango fruit ripening, their regulation mechanisms in modulating mango fruit ripening remain uncertain. In this study, we performed integrative analyses of metabolome and transcriptome data combined with a series of physiological and experimental analyses in the ‘Keitt’ mango, and we characterized changes in accumulation of specific metabolites at different stages during fruit development and ripening, which were strongly correlated with transcriptional changes and embodied physiological changes as well as taste formation. Specifically, we found that ABA, rather than ethylene, was highly associated with mango ripening, and exogenous ABA application promoted mango fruit ripening. Transcriptomic analysis identified diverse ripening-related genes involved in sugar and carotenoid biosynthesis and softening-related metabolic processes. Furthermore, networks of ABA- and ripening-related genes (such as MiHY5, MiGBF4, MiABI5, and MibZIP9) were constructed, and the direct regulation by the key ABA-responsive transcription factor MiHY5 of ripening-related genes was experimentally confirmed by a range of evidence. Taken together, our results indicate that ABA plays a key role in directly modulating mango fruit ripening through MiHY5, suggesting the need to reconsider how we understand ABA function in modulating climacteric fruit ripening.