Cargando…
Radiomics-Based Machine Learning Models for Predicting P504s/P63 Immunohistochemical Expression: A Noninvasive Diagnostic Tool for Prostate Cancer
OBJECTIVE: To develop and validate a noninvasive radiomic-based machine learning (ML) model to identify P504s/P63 status and further achieve the diagnosis of prostate cancer (PCa). METHODS: A retrospective dataset of patients with preoperative prostate MRI examination and P504s/P63 pathological immu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252170/ https://www.ncbi.nlm.nih.gov/pubmed/35795067 http://dx.doi.org/10.3389/fonc.2022.911426 |