Cargando…
Radiomics-Based Machine Learning Models for Predicting P504s/P63 Immunohistochemical Expression: A Noninvasive Diagnostic Tool for Prostate Cancer
OBJECTIVE: To develop and validate a noninvasive radiomic-based machine learning (ML) model to identify P504s/P63 status and further achieve the diagnosis of prostate cancer (PCa). METHODS: A retrospective dataset of patients with preoperative prostate MRI examination and P504s/P63 pathological immu...
Autores principales: | Liu, Yun-Fan, Shu, Xin, Qiao, Xiao-Feng, Ai, Guang-Yong, Liu, Li, Liao, Jun, Qian, Shuang, He, Xiao-Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252170/ https://www.ncbi.nlm.nih.gov/pubmed/35795067 http://dx.doi.org/10.3389/fonc.2022.911426 |
Ejemplares similares
-
Immunohistochemical panel to characterize canine prostate carcinomas according to aberrant p63 expression
por: Fonseca-Alves, Carlos Eduardo, et al.
Publicado: (2018) -
Immunohistochemical Analysis of P63 Expression in Odontogenic Lesions
por: Atarbashi Moghadam, Saede, et al.
Publicado: (2013) -
Circulating Prostate Cells Found in Men with Benign Prostate Disease Are P504S Negative: Clinical Implications
por: Murray, Nigel P., et al.
Publicado: (2013) -
Can p503s, p504s and p510s gene expression in peripheral-blood be useful as a marker of prostatic cancer?
por: Cardillo, Maria Rosaria, et al.
Publicado: (2005) -
Machine development du 50.4-1970
por: Henny, L, et al.
Publicado: (1970)