Cargando…

Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system

Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes...

Descripción completa

Detalles Bibliográficos
Autores principales: Medinas, Danilo B., Rozas, Pablo, Hetz, Claudio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253707/
https://www.ncbi.nlm.nih.gov/pubmed/35654139
http://dx.doi.org/10.1016/j.jbc.2022.102087
_version_ 1784740552484323328
author Medinas, Danilo B.
Rozas, Pablo
Hetz, Claudio
author_facet Medinas, Danilo B.
Rozas, Pablo
Hetz, Claudio
author_sort Medinas, Danilo B.
collection PubMed
description Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.
format Online
Article
Text
id pubmed-9253707
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-92537072022-07-08 Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system Medinas, Danilo B. Rozas, Pablo Hetz, Claudio J Biol Chem JBC Reviews Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions. American Society for Biochemistry and Molecular Biology 2022-05-30 /pmc/articles/PMC9253707/ /pubmed/35654139 http://dx.doi.org/10.1016/j.jbc.2022.102087 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle JBC Reviews
Medinas, Danilo B.
Rozas, Pablo
Hetz, Claudio
Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system
title Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system
title_full Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system
title_fullStr Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system
title_full_unstemmed Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system
title_short Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system
title_sort critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system
topic JBC Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253707/
https://www.ncbi.nlm.nih.gov/pubmed/35654139
http://dx.doi.org/10.1016/j.jbc.2022.102087
work_keys_str_mv AT medinasdanilob criticalrolesofproteindisulfideisomerasesinbalancingproteostasisinthenervoussystem
AT rozaspablo criticalrolesofproteindisulfideisomerasesinbalancingproteostasisinthenervoussystem
AT hetzclaudio criticalrolesofproteindisulfideisomerasesinbalancingproteostasisinthenervoussystem