Cargando…
Resolving missing protein problems using functional class scoring
Despite technological advances in proteomics, incomplete coverage and inconsistency issues persist, resulting in “data holes”. These data holes cause the missing protein problem (MPP), where relevant proteins are persistently unobserved, or sporadically observed across samples, hindering biomarker d...
Autores principales: | Wong, Bertrand Jern Han, Kong, Weijia, Wong, Limsoon, Goh, Wilson Wen Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256666/ https://www.ncbi.nlm.nih.gov/pubmed/35790756 http://dx.doi.org/10.1038/s41598-022-15314-3 |
Ejemplares similares
-
Avoid Oversimplifications in Machine Learning: Going beyond the Class-Prediction Accuracy
por: Ho, Sung Yang, et al.
Publicado: (2020) -
Protein complex-based analysis is resistant to the obfuscating consequences of batch effects --- a case study in clinical proteomics
por: Goh, Wilson Wen Bin, et al.
Publicado: (2017) -
Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF
por: Huang, Zelu, et al.
Publicado: (2022) -
ProInfer: An interpretable protein inference tool leveraging on biological networks
por: Peng, Hui, et al.
Publicado: (2023) -
The Birth of Bio-data Science: Trends, Expectations, and Applications
por: Goh, Wilson Wen Bin, et al.
Publicado: (2020)