Cargando…
Predictions and experimental tests of a new biophysical model of the mammalian respiratory oscillator
Previously our computational modeling studies (Phillips et al., 2019) proposed that neuronal persistent sodium current (I(NaP)) and calcium-activated non-selective cation current (I(CAN)) are key biophysical factors that, respectively, generate inspiratory rhythm and burst pattern in the mammalian p...
Autores principales: | Phillips, Ryan S, Koizumi, Hidehiko, Molkov, Yaroslav I, Rubin, Jonathan E, Smith, Jeffrey C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262387/ https://www.ncbi.nlm.nih.gov/pubmed/35796425 http://dx.doi.org/10.7554/eLife.74762 |
Ejemplares similares
-
Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model
por: Phillips, Ryan S, et al.
Publicado: (2019) -
State-dependent control of the respiratory pattern and coupled oscillators
por: Rybak, Ilya A, et al.
Publicado: (2011) -
Organization of the core respiratory network: Insights from optogenetic and modeling studies
por: Ausborn, Jessica, et al.
Publicado: (2018) -
A closed model for the respiratory system in mammals
por: Park, Choongseok, et al.
Publicado: (2012) -
Putting the theory into ‘burstlet theory’ with a biophysical model of burstlets and bursts in the respiratory preBötzinger complex
por: Phillips, Ryan S, et al.
Publicado: (2022)