Cargando…
Endogenous Pancreatic Cancer Cell PD-1 Activates MET and Induces Epithelial-Mesenchymal Transition to Promote Cancer Progression
SIMPLE SUMMARY: Here, we describe a previously unreported mechanism of PD-1/MET interaction and PD-1 induction of epithelial-to-mesenchymal transition (EMT), which is observed early in pancreatic cancer development and progression. This oncogenic mechanism is distinct from established immune functio...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264908/ https://www.ncbi.nlm.nih.gov/pubmed/35804822 http://dx.doi.org/10.3390/cancers14133051 |
Sumario: | SIMPLE SUMMARY: Here, we describe a previously unreported mechanism of PD-1/MET interaction and PD-1 induction of epithelial-to-mesenchymal transition (EMT), which is observed early in pancreatic cancer development and progression. This oncogenic mechanism is distinct from established immune functions of PD-1 and presents a new paradigm of oncogenic functionality of PD-1 in cancer cells. Our studies demonstrate the foundation and rationale for testing combination therapies targeting PD-1 and MET in pancreatic cancer patients. ABSTRACT: We recently demonstrated that immune checkpoint PD-1 was endogenously expressed in pancreatic ductal adenocarcinoma (PDAC) cells. Our data indicated that PD-1 proteins are not exclusive to immune cells and have unrecognized signal transduction cascades intrinsic to cancer cells. Building on this paradigm shift, we sought to further characterize PD-1 expression in PDAC. We utilized a phospho-explorer array to identify pathways upregulated by PD-1 signaling. We discovered PD-1-mediated activation of the proto-oncogene MET in PDAC cells, which was dependent on hepatocyte growth factor (MET ligand) and not secondary to direct protein interaction. We then discovered that the PD-1/MET axis in PDAC cells regulated growth, migration, and invasion. Importantly, the PD-1/MET axis induced epithelial-to-mesenchymal transition (EMT), a well-established early oncogenic process in PDAC. We observed that combined targeting of PDAC cell PD-1 and MET resulted in substantial direct tumor cell cytotoxicity and growth inhibition in PDAC cell lines, patient-derived organoids, and patient-derived xenografts independent of cytotoxic immune responses. This is the first report of PDAC-endogenous PD-1 expression regulating MET signaling, which builds upon our growing body of work showing the oncogenic phenotype of PD-1 expression in PDAC cells is distinct from its immunogenic role. These results highlight a paradigm shift that the tumor-specific PD-1 axis is a novel target to effectively kill PDAC cells by antagonizing previously unrecognized PD-1-dependent oncogenic pathways. |
---|