Cargando…

Receptor tyrosine kinase MET ligand-interaction classified via machine learning from single-particle tracking data

Internalin B–mediated activation of the membrane-bound receptor tyrosine kinase MET is accompanied by a change in receptor mobility. Conversely, it should be possible to infer from receptor mobility whether a cell has been treated with internalin B. Here, we propose a method based on hidden Markov m...

Descripción completa

Detalles Bibliográficos
Autores principales: Malkusch, Sebastian, Rahm, Johanna V., Dietz, Marina S., Heilemann, Mike, Sibarita, Jean-Baptiste, Lötsch, Jörn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265154/
https://www.ncbi.nlm.nih.gov/pubmed/35171646
http://dx.doi.org/10.1091/mbc.E21-10-0496
Descripción
Sumario:Internalin B–mediated activation of the membrane-bound receptor tyrosine kinase MET is accompanied by a change in receptor mobility. Conversely, it should be possible to infer from receptor mobility whether a cell has been treated with internalin B. Here, we propose a method based on hidden Markov modeling and explainable artificial intelligence that machine-learns the key differences in MET mobility between internalin B–treated and –untreated cells from single-particle tracking data. Our method assigns receptor mobility to three diffusion modes (immobile, slow, and fast). It discriminates between internalin B–treated and –untreated cells with a balanced accuracy of >99% and identifies three parameters that are most affected by internalin B treatment: a decrease in the mobility of slow molecules (1) and a depopulation of the fast mode (2) caused by an increased transition of fast molecules to the slow mode (3). Our approach is based entirely on free software and is readily applicable to the analysis of other membrane receptors.