Cargando…
Indirect Measurement of β-Glucan Content in Barley Grain with Near-Infrared Reflectance Spectroscopy
β-Glucan is a component of barley grains with functional properties that make it useful for human consumption. Cultivars with high grain β-glucan are required for industrial processing. Breeding for barley genotypes with higher β-glucan content requires a high-throughput method to assess β-glucan qu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265271/ https://www.ncbi.nlm.nih.gov/pubmed/35804662 http://dx.doi.org/10.3390/foods11131846 |
Sumario: | β-Glucan is a component of barley grains with functional properties that make it useful for human consumption. Cultivars with high grain β-glucan are required for industrial processing. Breeding for barley genotypes with higher β-glucan content requires a high-throughput method to assess β-glucan quickly and cheaply. Wet-chemistry laboratory procedures are low-throughput and expensive, but indirect measurement methods such as near-infrared reflectance spectroscopy (NIRS) match the breeding requirements (once the NIR spectrometer is available). A predictive model for the indirect measurement of β-glucan content in ground barley grains with NIRS was therefore developed using 248 samples with a wide range of β-glucan contents (3.4%–17.6%). To develop such calibration, 198 unique samples were used for training and 50 for validation. The predictive model had R(2) = 0.990, bias = 0.013% and RMSEP = 0.327% for validation. NIRS was confirmed to be a very useful technique for indirect measurement of β-glucan content and evaluation of high-β-glucan barleys. |
---|