Cargando…
Research on Hyperparameter Optimization of Concrete Slump Prediction Model Based on Response Surface Method
In this paper, eight variables of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate and flow are used as network input and slump is used as network output to construct a back-propagation (BP) neural network. On this basis, the learning rate, momentum fact...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267923/ https://www.ncbi.nlm.nih.gov/pubmed/35806843 http://dx.doi.org/10.3390/ma15134721 |