Cargando…
Domino Nitro Reduction-Friedländer Heterocyclization for the Preparation of Quinolines
The Friedländer synthesis offers efficient access to substituted quinolines from 2-aminobenzaldehydes and activated ketones in the presence of a base. The disadvantage of this procedure lies in the fact that relatively few 2-aminobenzaldehyde derivatives are readily available. To overcome this probl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268355/ https://www.ncbi.nlm.nih.gov/pubmed/35807369 http://dx.doi.org/10.3390/molecules27134123 |
Sumario: | The Friedländer synthesis offers efficient access to substituted quinolines from 2-aminobenzaldehydes and activated ketones in the presence of a base. The disadvantage of this procedure lies in the fact that relatively few 2-aminobenzaldehyde derivatives are readily available. To overcome this problem, we report a modification of this process involving the in situ reduction of 2-nitrobenzaldehydes with Fe/AcOH in the presence of active methylene compounds (AMCs) to produce substituted quinolines in high yields. The conditions are mild enough to tolerate a wide range of functionality in both reacting partners and promote reactions not only with phenyl and benzyl ketones, but also with β-keto-esters, β-keto-nitriles, β-keto-sulfones and β-diketones. The reaction of 2-nitroaromatic ketones with unsymmetrical AMCs is less reliable, giving a competitive formation of substituted quinolin-2(1H)-ones from the cyclization of the Z Knoevenagel intermediate which appears to be favored when certain large groups are adjacent to the AMC ketone carbonyl. |
---|