Cargando…
A Framework for Trajectory Prediction of Preceding Target Vehicles in Urban Scenario Using Multi-Sensor Fusion
Preceding vehicles have a significant impact on the safety of the vehicle, whether or not it has the same driving direction as an ego-vehicle. Reliable trajectory prediction of preceding vehicles is crucial for making safer planning. In this paper, we propose a framework for trajectory prediction of...
Autores principales: | Zou, Bin, Li, Wenbo, Hou, Xianjun, Tang, Luqi, Yuan, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268907/ https://www.ncbi.nlm.nih.gov/pubmed/35808302 http://dx.doi.org/10.3390/s22134808 |
Ejemplares similares
-
Real-Time Trajectory Prediction Method for Intelligent Connected Vehicles in Urban Intersection Scenarios
por: Wang, Pangwei, et al.
Publicado: (2023) -
Real-Time Hybrid Multi-Sensor Fusion Framework for Perception in Autonomous Vehicles
por: Shahian Jahromi, Babak, et al.
Publicado: (2019) -
A Deep Learning Framework for Accurate Vehicle Yaw Angle Estimation from a Monocular Camera Based on Part Arrangement
por: Huang, Wenjun, et al.
Publicado: (2022) -
TRUST: A Novel Framework for Vehicle Trajectory Recovery from Urban-Scale Videos
por: Ji, Wentao, et al.
Publicado: (2022) -
LiDAR-Based Sensor Fusion SLAM and Localization for Autonomous Driving Vehicles in Complex Scenarios
por: Dai, Kai, et al.
Publicado: (2023)