Cargando…
Phenotypic and genotypic characterisation of thymine auxotrophy in Escherichia coli isolated from a patient with recurrent bloodstream infection
INTRODUCTION: Thymine auxotrophic in vitro mutants of Escherichia coli were first reported in the mid-20th century. Later, thymine-dependent clinical strains of E. coli as well as other Enterobacterales, Enterococcus faecalis and Staphylococcus aureus have been recognized as the cause of persistent...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269972/ https://www.ncbi.nlm.nih.gov/pubmed/35802671 http://dx.doi.org/10.1371/journal.pone.0270256 |
Sumario: | INTRODUCTION: Thymine auxotrophic in vitro mutants of Escherichia coli were first reported in the mid-20th century. Later, thymine-dependent clinical strains of E. coli as well as other Enterobacterales, Enterococcus faecalis and Staphylococcus aureus have been recognized as the cause of persistent and recurrent infections. OBJECTIVES: The aim of this study was to characterize the phenotype and investigate the molecular basis of thymine auxotrophy in ten E. coli isolates obtained at different time points from a patient with recurrent bloodstream infection (BSI) due to a chronic aortic graft infection treated with Trimethoprim/sulfamethoxazole (TMP-SMX). METHODS: Clinical data was obtained from hospital records. Growth characterization and antimicrobial susceptibility testing to TMP-SMX was performed on M9 agar and in MH broth with different thymine concentrations (0.5, 2, 5, 10 and 20 μg/mL), on Mueller-Hinton (MH) and blood agar. Whole genome sequencing (WGS) was performed on all E. coli isolates. RESULTS: E. coli were isolated from ten consecutive BSI episodes from a patient with chronic aortic graft infection. Six of these isolates were resistant to TMP-SMX when assayed on blood agar. Growth experiments with added thymine confirmed that these isolates were thymine-dependent (thy-), and revealed growth defects (slower growth rate and smaller colony size) in these isolates relative to thy+ isolates (n = 4). WGS indicated that all isolates were of the same clonal lineage of sequence type 7358. Genomic analysis revealed a G172C substitution in thyA in all TMP-SMX resistant isolates, while mutations affecting genes involved in the deoxyribose salvage pathway (deoB and deoC) were identified in eight isolates. CONCLUSION: This case highlights the risk of resistance development to TMP-SMX, especially for long-term treatment, and the possible pitfalls in detection of growth-deficient subpopulations from chronic infections, which could lead to treatment failure. |
---|