Cargando…

Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers

Gene-environment interactions represent the modification of genetic effects by environmental exposures and are critical for understanding disease and informing personalized medicine. These often induce differential phenotypic variance across genotypes; these variance-quantitative trait loci can be p...

Descripción completa

Detalles Bibliográficos
Autores principales: Westerman, Kenneth E., Majarian, Timothy D., Giulianini, Franco, Jang, Dong-Keun, Miao, Jenkai, Florez, Jose C., Chen, Han, Chasman, Daniel I., Udler, Miriam S., Manning, Alisa K., Cole, Joanne B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271055/
https://www.ncbi.nlm.nih.gov/pubmed/35810165
http://dx.doi.org/10.1038/s41467-022-31625-5
_version_ 1784744598205104128
author Westerman, Kenneth E.
Majarian, Timothy D.
Giulianini, Franco
Jang, Dong-Keun
Miao, Jenkai
Florez, Jose C.
Chen, Han
Chasman, Daniel I.
Udler, Miriam S.
Manning, Alisa K.
Cole, Joanne B.
author_facet Westerman, Kenneth E.
Majarian, Timothy D.
Giulianini, Franco
Jang, Dong-Keun
Miao, Jenkai
Florez, Jose C.
Chen, Han
Chasman, Daniel I.
Udler, Miriam S.
Manning, Alisa K.
Cole, Joanne B.
author_sort Westerman, Kenneth E.
collection PubMed
description Gene-environment interactions represent the modification of genetic effects by environmental exposures and are critical for understanding disease and informing personalized medicine. These often induce differential phenotypic variance across genotypes; these variance-quantitative trait loci can be prioritized in a two-stage interaction detection strategy to greatly reduce the computational and statistical burden and enable testing of a broader range of exposures. We perform genome-wide variance-quantitative trait locus analysis for 20 serum cardiometabolic biomarkers by multi-ancestry meta-analysis of 350,016 unrelated participants in the UK Biobank, identifying 182 independent locus-biomarker pairs (p < 4.5×10(−9)). Most are concentrated in a small subset (4%) of loci with genome-wide significant main effects, and 44% replicate (p < 0.05) in the Women’s Genome Health Study (N = 23,294). Next, we test each locus-biomarker pair for interaction across 2380 exposures, identifying 847 significant interactions (p < 2.4×10(−7)), of which 132 are independent (p < 0.05) after accounting for correlation between exposures. Specific examples demonstrate interaction of triglyceride-associated variants with distinct body mass- versus body fat-related exposures as well as genotype-specific associations between alcohol consumption and liver stress at the ADH1B gene. Our catalog of variance-quantitative trait loci and gene-environment interactions is publicly available in an online portal.
format Online
Article
Text
id pubmed-9271055
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92710552022-07-11 Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers Westerman, Kenneth E. Majarian, Timothy D. Giulianini, Franco Jang, Dong-Keun Miao, Jenkai Florez, Jose C. Chen, Han Chasman, Daniel I. Udler, Miriam S. Manning, Alisa K. Cole, Joanne B. Nat Commun Article Gene-environment interactions represent the modification of genetic effects by environmental exposures and are critical for understanding disease and informing personalized medicine. These often induce differential phenotypic variance across genotypes; these variance-quantitative trait loci can be prioritized in a two-stage interaction detection strategy to greatly reduce the computational and statistical burden and enable testing of a broader range of exposures. We perform genome-wide variance-quantitative trait locus analysis for 20 serum cardiometabolic biomarkers by multi-ancestry meta-analysis of 350,016 unrelated participants in the UK Biobank, identifying 182 independent locus-biomarker pairs (p < 4.5×10(−9)). Most are concentrated in a small subset (4%) of loci with genome-wide significant main effects, and 44% replicate (p < 0.05) in the Women’s Genome Health Study (N = 23,294). Next, we test each locus-biomarker pair for interaction across 2380 exposures, identifying 847 significant interactions (p < 2.4×10(−7)), of which 132 are independent (p < 0.05) after accounting for correlation between exposures. Specific examples demonstrate interaction of triglyceride-associated variants with distinct body mass- versus body fat-related exposures as well as genotype-specific associations between alcohol consumption and liver stress at the ADH1B gene. Our catalog of variance-quantitative trait loci and gene-environment interactions is publicly available in an online portal. Nature Publishing Group UK 2022-07-09 /pmc/articles/PMC9271055/ /pubmed/35810165 http://dx.doi.org/10.1038/s41467-022-31625-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Westerman, Kenneth E.
Majarian, Timothy D.
Giulianini, Franco
Jang, Dong-Keun
Miao, Jenkai
Florez, Jose C.
Chen, Han
Chasman, Daniel I.
Udler, Miriam S.
Manning, Alisa K.
Cole, Joanne B.
Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers
title Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers
title_full Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers
title_fullStr Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers
title_full_unstemmed Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers
title_short Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers
title_sort variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271055/
https://www.ncbi.nlm.nih.gov/pubmed/35810165
http://dx.doi.org/10.1038/s41467-022-31625-5
work_keys_str_mv AT westermankennethe variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT majariantimothyd variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT giulianinifranco variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT jangdongkeun variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT miaojenkai variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT florezjosec variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT chenhan variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT chasmandanieli variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT udlermiriams variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT manningalisak variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers
AT colejoanneb variancequantitativetraitlocienablesystematicdiscoveryofgeneenvironmentinteractionsforcardiometabolicserumbiomarkers