Cargando…
Targeting non-structural proteins of Hepatitis C virus for predicting repurposed drugs using QSAR and machine learning approaches
Hepatitis C virus (HCV) infection causes viral hepatitis leading to hepatocellular carcinoma. Despite the clinical use of direct-acting antivirals (DAAs) still there is treatment failure in 5–10% cases. Therefore, it is crucial to develop new antivirals against HCV. In this endeavor, we developed th...
Autores principales: | Kamboj, Sakshi, Rajput, Akanksha, Rastogi, Amber, Thakur, Anamika, Kumar, Manoj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271984/ https://www.ncbi.nlm.nih.gov/pubmed/35832613 http://dx.doi.org/10.1016/j.csbj.2022.06.060 |
Ejemplares similares
-
Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning
por: Rajput, Akanksha, et al.
Publicado: (2021) -
Computational identification of repurposed drugs against viruses causing epidemics and pandemics via drug-target network analysis
por: Rajput, Akanksha, et al.
Publicado: (2021) -
Biofilm-i: A Platform for Predicting Biofilm Inhibitors Using Quantitative Structure—Relationship (QSAR) Based Regression Models to Curb Antibiotic Resistance
por: Rajput, Akanksha, et al.
Publicado: (2022) -
Computational Identification of Inhibitors Using QSAR Approach Against Nipah Virus
por: Rajput, Akanksha, et al.
Publicado: (2019) -
Anti-flavi: A Web Platform to Predict Inhibitors of Flaviviruses Using QSAR and Peptidomimetic Approaches
por: Rajput, Akanksha, et al.
Publicado: (2018)