Cargando…
Polynomial Mendelian randomization reveals non-linear causal effects for obesity-related traits
Causal inference is a critical step in improving our understanding of biological processes, and Mendelian randomization (MR) has emerged as one of the foremost methods to efficiently interrogate diverse hypotheses using large-scale, observational data from biobanks. Although many extensions have bee...
Autores principales: | Sulc, Jonathan, Sjaarda, Jennifer, Kutalik, Zoltán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272036/ https://www.ncbi.nlm.nih.gov/pubmed/35832928 http://dx.doi.org/10.1016/j.xhgg.2022.100124 |
Ejemplares similares
-
Composite trait Mendelian randomization reveals distinct metabolic and lifestyle consequences of differences in body shape
por: Sulc, Jonathan, et al.
Publicado: (2021) -
Partner choice, confounding and trait convergence all contribute to phenotypic partner similarity
por: Sjaarda, Jennifer, et al.
Publicado: (2023) -
Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits
por: Porcu, Eleonora, et al.
Publicado: (2019) -
Distilling causality between physical activity traits and obesity via Mendelian randomization
por: Wang, Zhe, et al.
Publicado: (2023) -
Quantification of the overall contribution of gene-environment interaction for obesity-related traits
por: Sulc, Jonathan, et al.
Publicado: (2020)