Cargando…
Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
Glass-forming ability (GFA) of bulk metallic glasses (BMGs) is a determinant parameter which has been significantly studied. GFA improvements could be achieved through trial-and-error experiments, as a tedious work, or by using developed predicting tools. Machine-Learning (ML) has been used as a pro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273633/ https://www.ncbi.nlm.nih.gov/pubmed/35817887 http://dx.doi.org/10.1038/s41598-022-15981-2 |