Cargando…
Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
Glass-forming ability (GFA) of bulk metallic glasses (BMGs) is a determinant parameter which has been significantly studied. GFA improvements could be achieved through trial-and-error experiments, as a tedious work, or by using developed predicting tools. Machine-Learning (ML) has been used as a pro...
Autores principales: | Ghorbani, Alireza, Askari, Amirhossein, Malekan, Mehdi, Nili-Ahmadabadi, Mahmoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273633/ https://www.ncbi.nlm.nih.gov/pubmed/35817887 http://dx.doi.org/10.1038/s41598-022-15981-2 |
Ejemplares similares
-
Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses
por: Yang, B. J., et al.
Publicado: (2017) -
Bulk metallic glasses
por: George, Thomas F, et al.
Publicado: (2011) -
Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses
por: Wen, Tongqi, et al.
Publicado: (2017) -
The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions
por: Wang, Q., et al.
Publicado: (2014) -
Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases
por: Perim, Eric, et al.
Publicado: (2016)