Cargando…

Puerarin suppresses hypoxia-induced vascular endothelial growth factor upregulation in human retinal pigmented epithelial cells by blocking JAK2/STAT3 pathway

The purpose of this study was to explore the mechanism by which puerarin regulated the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in humans’ retinal pigment epithelial (RPE) cells under hypoxia. RPE cells (ARPE-19 and D407 cells) and a rat model...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Huixin, Kong, Lingchun, Yang, Yuqin, Li, Jingjing, Zou, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275891/
https://www.ncbi.nlm.nih.gov/pubmed/35510332
http://dx.doi.org/10.1080/21655979.2022.2070586
Descripción
Sumario:The purpose of this study was to explore the mechanism by which puerarin regulated the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in humans’ retinal pigment epithelial (RPE) cells under hypoxia. RPE cells (ARPE-19 and D407 cells) and a rat model of oxygen-induced retinopathy were used in the current study. Western blotting and ELISA were performed to detect the level of JAK2, phosphorylated JAK2, STAT3, phosphorylated STAT3, HIF-1α, and VEGF in cells. In addition, the interaction between JAK2 and STAT3 was determined using with a co-immunoprecipitation assay. We found puerarin inhibited hypoxia-induced upregulation of VEGF at both the mRNA and protein level via decreasing HIF-1α expression in RPE cells. Moreover, puerarin attenuated the interaction between JAK2 and STAT3, and subsequently blocking p-STAT3 nucleus translocation in vitro and in vivo. In conclusion, puerarin could effectively inhibit hypoxia-induced VEGF upregulation in RPE cells via mediated JAK2/STAT3 pathway.