Cargando…
Integrating digital pathology and mathematical modelling to predict spatial biomarker dynamics in cancer immunotherapy
In oncology clinical trials, on-treatment biopsy samples are taken to confirm the mode of action of new molecules, among other reasons. Yet, the time point of sample collection is typically scheduled according to 'Expert Best Guess'. We have developed an approach integrating digital pathol...
Autores principales: | Hutchinson, L. G., Grimm, O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276679/ https://www.ncbi.nlm.nih.gov/pubmed/35821064 http://dx.doi.org/10.1038/s41746-022-00636-3 |
Ejemplares similares
-
Predicting Outcomes of Prostate Cancer Immunotherapy by Personalized Mathematical Models
por: Kronik, Natalie, et al.
Publicado: (2010) -
Visual-spatial dimension integration in digital pathology education enhances anatomical pathology learning
por: Wan, Ken Lee, et al.
Publicado: (2022) -
A novel cervix carcinoma biomarker: Pathological-epigenomics, integrated analysis of MethylMix algorithm and pathology for predicting response to cancer immunotherapy
por: Yu, Yu-Chong, et al.
Publicado: (2022) -
Artificial Intelligence in Digital Pathology to Advance Cancer Immunotherapy
por: Chen, Pingjun, et al.
Publicado: (2022) -
CellSpatialGraph: Integrate hierarchical phenotyping and graph modeling to characterize spatial architecture in tumor microenvironment on digital pathology
por: Chen, Pingjun, et al.
Publicado: (2021)