Cargando…
Inference and uncertainty quantification of stochastic gene expression via synthetic models
Estimating uncertainty in model predictions is a central task in quantitative biology. Biological models at the single-cell level are intrinsically stochastic and nonlinear, creating formidable challenges for their statistical estimation which inevitably has to rely on approximations that trade accu...
Autores principales: | Öcal, Kaan, Gutmann, Michael U., Sanguinetti, Guido, Grima, Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277240/ https://www.ncbi.nlm.nih.gov/pubmed/35858045 http://dx.doi.org/10.1098/rsif.2022.0153 |
Ejemplares similares
-
Analytical approximations for spatial stochastic gene expression in single cells and tissues
por: Smith, Stephen, et al.
Publicado: (2016) -
Uncertainty, epistemics and active inference
por: Parr, Thomas, et al.
Publicado: (2017) -
Parameter estimation and uncertainty quantification using information geometry
por: Sharp, Jesse A., et al.
Publicado: (2022) -
Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry
por: House, Thomas, et al.
Publicado: (2016) -
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
por: Ye, Dongwei, et al.
Publicado: (2022)