Cargando…

Fabrication and characterization of tea polyphenol W/O microemulsion‐based bioactive edible film for sustained release in fish floss preservation

A coated nanoemulsion (CNE)‐based edible film was fabricated on the surface of fish floss (FF) to extend its shelf life during storage. The antioxidant tea polyphenol (TPP) was embedded into W/O microemulsion, which was further encapsulated into multiple emulsion (Multi‐E) together with functional s...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Mengna, Zhao, Qiaoling, Lin, Yanan, Wang, Haifeng, Shui, Ruofan, Wang, Shitong, Ge, Lijun, Li, Yunyan, Song, Gongshuai, Gong, Jinyan, Wang, Haixing, Chen, Xi, Shen, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281946/
https://www.ncbi.nlm.nih.gov/pubmed/35844905
http://dx.doi.org/10.1002/fsn3.2845
Descripción
Sumario:A coated nanoemulsion (CNE)‐based edible film was fabricated on the surface of fish floss (FF) to extend its shelf life during storage. The antioxidant tea polyphenol (TPP) was embedded into W/O microemulsion, which was further encapsulated into multiple emulsion (Multi‐E) together with functional soluble dietary fiber (SDF). The physicochemical properties indicated that the nanoemulsion‐based edible film (NEF) improved the morphology of FF and reduced the crystallinity of the film by scanning electron microscopy (SEM) and X‐ray diffraction (XRD). The water vapor permeability increased gradually and rose to only 0.99% after 5 h, resulting in the water activity of FF at a low level (≤0.51) during the storage period. The TPP inside was released at a constant rate (≤18.10%) on the surface, and such a rate was accelerated in the simulated gastrointestinal environment, especially in intestine reaching 60.12% after 5 h of digestion. Besides, the effect of NEF on the flavor was also evaluated and the contents of ketones, phenols, and pyrazines increased, which displayed a regulating effect on the overall flavor of FF by blocking the external moisture and suppressing the microorganism activity. In summary, the NEF effectively enhanced the flavor and taste of FF, controlled the release of TPP, and reduced the water activity during the storage, thereby extending the shelf life.