Cargando…
Genetic and structural basis of the human anti-α-galactosyl antibody response
Humans lack the capacity to produce the Galα1–3Galβ1–4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analy...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282431/ https://www.ncbi.nlm.nih.gov/pubmed/35867757 http://dx.doi.org/10.1073/pnas.2123212119 |
_version_ | 1784747102239195136 |
---|---|
author | Langley, David B. Schofield, Peter Nevoltris, Damien Jackson, Jennifer Jackson, Katherine J. L. Peters, Tim J. Burk, Melanie Matthews, Jacqueline M. Basten, Antony Goodnow, Christopher C. van Nunen, Sheryl Reed, Joanne H. Christ, Daniel |
author_facet | Langley, David B. Schofield, Peter Nevoltris, Damien Jackson, Jennifer Jackson, Katherine J. L. Peters, Tim J. Burk, Melanie Matthews, Jacqueline M. Basten, Antony Goodnow, Christopher C. van Nunen, Sheryl Reed, Joanne H. Christ, Daniel |
author_sort | Langley, David B. |
collection | PubMed |
description | Humans lack the capacity to produce the Galα1–3Galβ1–4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development. |
format | Online Article Text |
id | pubmed-9282431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-92824312023-01-08 Genetic and structural basis of the human anti-α-galactosyl antibody response Langley, David B. Schofield, Peter Nevoltris, Damien Jackson, Jennifer Jackson, Katherine J. L. Peters, Tim J. Burk, Melanie Matthews, Jacqueline M. Basten, Antony Goodnow, Christopher C. van Nunen, Sheryl Reed, Joanne H. Christ, Daniel Proc Natl Acad Sci U S A Biological Sciences Humans lack the capacity to produce the Galα1–3Galβ1–4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development. National Academy of Sciences 2022-07-08 2022-07-12 /pmc/articles/PMC9282431/ /pubmed/35867757 http://dx.doi.org/10.1073/pnas.2123212119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Langley, David B. Schofield, Peter Nevoltris, Damien Jackson, Jennifer Jackson, Katherine J. L. Peters, Tim J. Burk, Melanie Matthews, Jacqueline M. Basten, Antony Goodnow, Christopher C. van Nunen, Sheryl Reed, Joanne H. Christ, Daniel Genetic and structural basis of the human anti-α-galactosyl antibody response |
title | Genetic and structural basis of the human anti-α-galactosyl antibody response |
title_full | Genetic and structural basis of the human anti-α-galactosyl antibody response |
title_fullStr | Genetic and structural basis of the human anti-α-galactosyl antibody response |
title_full_unstemmed | Genetic and structural basis of the human anti-α-galactosyl antibody response |
title_short | Genetic and structural basis of the human anti-α-galactosyl antibody response |
title_sort | genetic and structural basis of the human anti-α-galactosyl antibody response |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282431/ https://www.ncbi.nlm.nih.gov/pubmed/35867757 http://dx.doi.org/10.1073/pnas.2123212119 |
work_keys_str_mv | AT langleydavidb geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT schofieldpeter geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT nevoltrisdamien geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT jacksonjennifer geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT jacksonkatherinejl geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT peterstimj geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT burkmelanie geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT matthewsjacquelinem geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT bastenantony geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT goodnowchristopherc geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT vannunensheryl geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT reedjoanneh geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse AT christdaniel geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse |