Cargando…

Genetic and structural basis of the human anti-α-galactosyl antibody response

Humans lack the capacity to produce the Galα1–3Galβ1–4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Langley, David B., Schofield, Peter, Nevoltris, Damien, Jackson, Jennifer, Jackson, Katherine J. L., Peters, Tim J., Burk, Melanie, Matthews, Jacqueline M., Basten, Antony, Goodnow, Christopher C., van Nunen, Sheryl, Reed, Joanne H., Christ, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282431/
https://www.ncbi.nlm.nih.gov/pubmed/35867757
http://dx.doi.org/10.1073/pnas.2123212119
_version_ 1784747102239195136
author Langley, David B.
Schofield, Peter
Nevoltris, Damien
Jackson, Jennifer
Jackson, Katherine J. L.
Peters, Tim J.
Burk, Melanie
Matthews, Jacqueline M.
Basten, Antony
Goodnow, Christopher C.
van Nunen, Sheryl
Reed, Joanne H.
Christ, Daniel
author_facet Langley, David B.
Schofield, Peter
Nevoltris, Damien
Jackson, Jennifer
Jackson, Katherine J. L.
Peters, Tim J.
Burk, Melanie
Matthews, Jacqueline M.
Basten, Antony
Goodnow, Christopher C.
van Nunen, Sheryl
Reed, Joanne H.
Christ, Daniel
author_sort Langley, David B.
collection PubMed
description Humans lack the capacity to produce the Galα1–3Galβ1–4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development.
format Online
Article
Text
id pubmed-9282431
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-92824312023-01-08 Genetic and structural basis of the human anti-α-galactosyl antibody response Langley, David B. Schofield, Peter Nevoltris, Damien Jackson, Jennifer Jackson, Katherine J. L. Peters, Tim J. Burk, Melanie Matthews, Jacqueline M. Basten, Antony Goodnow, Christopher C. van Nunen, Sheryl Reed, Joanne H. Christ, Daniel Proc Natl Acad Sci U S A Biological Sciences Humans lack the capacity to produce the Galα1–3Galβ1–4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development. National Academy of Sciences 2022-07-08 2022-07-12 /pmc/articles/PMC9282431/ /pubmed/35867757 http://dx.doi.org/10.1073/pnas.2123212119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Langley, David B.
Schofield, Peter
Nevoltris, Damien
Jackson, Jennifer
Jackson, Katherine J. L.
Peters, Tim J.
Burk, Melanie
Matthews, Jacqueline M.
Basten, Antony
Goodnow, Christopher C.
van Nunen, Sheryl
Reed, Joanne H.
Christ, Daniel
Genetic and structural basis of the human anti-α-galactosyl antibody response
title Genetic and structural basis of the human anti-α-galactosyl antibody response
title_full Genetic and structural basis of the human anti-α-galactosyl antibody response
title_fullStr Genetic and structural basis of the human anti-α-galactosyl antibody response
title_full_unstemmed Genetic and structural basis of the human anti-α-galactosyl antibody response
title_short Genetic and structural basis of the human anti-α-galactosyl antibody response
title_sort genetic and structural basis of the human anti-α-galactosyl antibody response
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282431/
https://www.ncbi.nlm.nih.gov/pubmed/35867757
http://dx.doi.org/10.1073/pnas.2123212119
work_keys_str_mv AT langleydavidb geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT schofieldpeter geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT nevoltrisdamien geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT jacksonjennifer geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT jacksonkatherinejl geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT peterstimj geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT burkmelanie geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT matthewsjacquelinem geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT bastenantony geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT goodnowchristopherc geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT vannunensheryl geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT reedjoanneh geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse
AT christdaniel geneticandstructuralbasisofthehumanantiagalactosylantibodyresponse