Cargando…

Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n‐Type Bi(2)Te(2.7)Se(0.3)

Bismuth telluride‐based thermoelectric (TE) materials are historically recognized as the best p‐type (ZT = 1.8) TE materials at room temperature. However, the poor performance of n‐type (ZT≈1.0) counterparts seriously reduces the efficiency of the device. Such performance imbalance severely impedes...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Cheng‐Lung, Wang, Te‐Hsien, Yu, Zih‐Gin, Hutabalian, Yohanes, Vankayala, Ranganayakulu K., Chen, Chao‐Chih, Hsieh, Wen‐Pin, Jeng, Horng‐Tay, Wei, Da‐Hua, Chen, Yang‐Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284191/
https://www.ncbi.nlm.nih.gov/pubmed/35478495
http://dx.doi.org/10.1002/advs.202201353
_version_ 1784747509699051520
author Chen, Cheng‐Lung
Wang, Te‐Hsien
Yu, Zih‐Gin
Hutabalian, Yohanes
Vankayala, Ranganayakulu K.
Chen, Chao‐Chih
Hsieh, Wen‐Pin
Jeng, Horng‐Tay
Wei, Da‐Hua
Chen, Yang‐Yuan
author_facet Chen, Cheng‐Lung
Wang, Te‐Hsien
Yu, Zih‐Gin
Hutabalian, Yohanes
Vankayala, Ranganayakulu K.
Chen, Chao‐Chih
Hsieh, Wen‐Pin
Jeng, Horng‐Tay
Wei, Da‐Hua
Chen, Yang‐Yuan
author_sort Chen, Cheng‐Lung
collection PubMed
description Bismuth telluride‐based thermoelectric (TE) materials are historically recognized as the best p‐type (ZT = 1.8) TE materials at room temperature. However, the poor performance of n‐type (ZT≈1.0) counterparts seriously reduces the efficiency of the device. Such performance imbalance severely impedes its TE applications either in electrical generation or refrigeration. Here, a strategy to boost n‐type Bi(2)Te(2.7)Se(0.3) crystals up to ZT = 1.42 near room temperature by a two‐stage process is reported, that is, step 1: stabilizing Seebeck coefficient by CuI doping; step 2: boosting power factor (PF) by synergistically optimizing phonon and carrier transport via thermal‐driven Cu intercalation in the van der Waals (vdW) gaps. Theoretical ab initio calculations disclose that these intercalated Cu atoms act as modulation doping and contribute conduction electrons of wavefunction spatially separated from the Cu atoms themselves, which simultaneously lead to large carrier concentration and high mobility. As a result, an ultra‐high PF ≈63.5 µW cm(−1) K(−2) at 300 K and a highest average ZT = 1.36 at 300–450 K are realized, which outperform all n‐type bismuth telluride materials ever reported. The work offers a new approach to improving n‐type layered TE materials.
format Online
Article
Text
id pubmed-9284191
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92841912022-07-15 Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n‐Type Bi(2)Te(2.7)Se(0.3) Chen, Cheng‐Lung Wang, Te‐Hsien Yu, Zih‐Gin Hutabalian, Yohanes Vankayala, Ranganayakulu K. Chen, Chao‐Chih Hsieh, Wen‐Pin Jeng, Horng‐Tay Wei, Da‐Hua Chen, Yang‐Yuan Adv Sci (Weinh) Research Articles Bismuth telluride‐based thermoelectric (TE) materials are historically recognized as the best p‐type (ZT = 1.8) TE materials at room temperature. However, the poor performance of n‐type (ZT≈1.0) counterparts seriously reduces the efficiency of the device. Such performance imbalance severely impedes its TE applications either in electrical generation or refrigeration. Here, a strategy to boost n‐type Bi(2)Te(2.7)Se(0.3) crystals up to ZT = 1.42 near room temperature by a two‐stage process is reported, that is, step 1: stabilizing Seebeck coefficient by CuI doping; step 2: boosting power factor (PF) by synergistically optimizing phonon and carrier transport via thermal‐driven Cu intercalation in the van der Waals (vdW) gaps. Theoretical ab initio calculations disclose that these intercalated Cu atoms act as modulation doping and contribute conduction electrons of wavefunction spatially separated from the Cu atoms themselves, which simultaneously lead to large carrier concentration and high mobility. As a result, an ultra‐high PF ≈63.5 µW cm(−1) K(−2) at 300 K and a highest average ZT = 1.36 at 300–450 K are realized, which outperform all n‐type bismuth telluride materials ever reported. The work offers a new approach to improving n‐type layered TE materials. John Wiley and Sons Inc. 2022-04-27 /pmc/articles/PMC9284191/ /pubmed/35478495 http://dx.doi.org/10.1002/advs.202201353 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Chen, Cheng‐Lung
Wang, Te‐Hsien
Yu, Zih‐Gin
Hutabalian, Yohanes
Vankayala, Ranganayakulu K.
Chen, Chao‐Chih
Hsieh, Wen‐Pin
Jeng, Horng‐Tay
Wei, Da‐Hua
Chen, Yang‐Yuan
Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n‐Type Bi(2)Te(2.7)Se(0.3)
title Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n‐Type Bi(2)Te(2.7)Se(0.3)
title_full Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n‐Type Bi(2)Te(2.7)Se(0.3)
title_fullStr Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n‐Type Bi(2)Te(2.7)Se(0.3)
title_full_unstemmed Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n‐Type Bi(2)Te(2.7)Se(0.3)
title_short Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n‐Type Bi(2)Te(2.7)Se(0.3)
title_sort modulation doping enables ultrahigh power factor and thermoelectric zt in n‐type bi(2)te(2.7)se(0.3)
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284191/
https://www.ncbi.nlm.nih.gov/pubmed/35478495
http://dx.doi.org/10.1002/advs.202201353
work_keys_str_mv AT chenchenglung modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT wangtehsien modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT yuzihgin modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT hutabalianyohanes modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT vankayalaranganayakuluk modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT chenchaochih modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT hsiehwenpin modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT jenghorngtay modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT weidahua modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03
AT chenyangyuan modulationdopingenablesultrahighpowerfactorandthermoelectricztinntypebi2te27se03