Cargando…
Targeting oxidized phospholipids by AAV-based gene therapy in mice with established hepatic steatosis prevents progression to fibrosis
Oxidized phosphatidylcholines (OxPCs) are implicated in chronic tissue damage. Hyperlipidemic LDL-R-–deficient mice transgenic for an OxPC-recognizing IgM fragment (scFv-E06) are protected against nonalcoholic fatty liver disease (NAFLD). To examine the effect of OxPC elimination at different stages...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286512/ https://www.ncbi.nlm.nih.gov/pubmed/35857497 http://dx.doi.org/10.1126/sciadv.abn0050 |
Sumario: | Oxidized phosphatidylcholines (OxPCs) are implicated in chronic tissue damage. Hyperlipidemic LDL-R-–deficient mice transgenic for an OxPC-recognizing IgM fragment (scFv-E06) are protected against nonalcoholic fatty liver disease (NAFLD). To examine the effect of OxPC elimination at different stages of NAFLD progression, we used cre-dependent, adeno-associated virus serotype 8–mediated expression of the single-chain variable fragment of E06 (AAV8-scFv-E06) in hepatocytes of albumin-cre mice. AAV8-induced expression of scFv-E06 at the start of FPC diet protected mice from developing hepatic steatosis. Independently, expression of scFv-E06 in mice with established steatosis prevented the progression to hepatic fibrosis. Mass spectrometry–based oxophospho-lipidomics identified individual OxPC species that were reduced by scFv-E06 expression. In vitro, identified OxPC species dysregulated mitochondrial metabolism and gene expression in hepatocytes and hepatic stellate cells. We demonstrate that individual OxPC species independently affect disease initiation and progression from hepatic steatosis to steatohepatitis, and that AAV-mediated expression of scFv-E06 is an effective therapeutic intervention. |
---|