Cargando…

Formulation and evaluation of a smart drug delivery system of 5-fluorouracil for pH-sensitive chemotherapy

The conventional chemotherapeutic drugs have many side effects due to their non-selective tissue distribution, reduced drug concentration of the drug at the tumor site, and the drug resistance. To overcome these problems the chemotherapeutic agent should selectively accumulate the tumor site and sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheralayikkal, Shamla, Manoj, K., Safna Hussan, K.P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287813/
https://www.ncbi.nlm.nih.gov/pubmed/35855997
http://dx.doi.org/10.1016/j.heliyon.2022.e09926
Descripción
Sumario:The conventional chemotherapeutic drugs have many side effects due to their non-selective tissue distribution, reduced drug concentration of the drug at the tumor site, and the drug resistance. To overcome these problems the chemotherapeutic agent should selectively accumulate the tumor site and stays there for a prolonged period of time releasing the payloads in a controlled manner. This can be achieved by the administration of a smart drug delivery system (SDDS) loaded with the active drug molecules. In this work, 5-fluorouracil (5-FU) is loaded into amine functionalised hollow mesoporous silica nanoparticles (HMSN-NH(2)) and then coated with a biocompatible polydopamine (PDA) to formulate SSDS for 5-FU for pH-sensitive drug release. The physiochemical properties were characterised; the structural morphology was observed by using optical microscope, scanning electron microscope and transmission electron microscope, chemical interaction between the drug and excipients were characterised from Fourier transform infrared spectroscopy, the entrapment efficiency of loaded drug and the pH-dependent drug release rate were evaluated using UV-visible spectroscopy. It was observed that, the drug is compatible with excipients by retaining all the characteristics peaks of 5-FU with negligible changes in the position in all physical mixtures. The PDA coated 5-FU loaded HMSN-NH(2) also exhibits a nearly spherical and non-aggregated morphology. The release rate was showed to increase with increase in concentration of structure-directing agent (Triton X 100) in the rate of a maximum release at the end of 72 h in pH 4. The prepared novel PDA coated 5-FU HMSN-NH(2) was found to be capable of delivering the anti-cancer drug 5-FU specifically at the tumor site in a pH-dependent stimuli-responsive manner. It also showed a controlled release for a period of 72 h. The enhanced cytotoxicity against HeLa cell line were found for the formulated SSD form.