Cargando…
Andrographolide protects bone marrow mesenchymal stem cells against glucose and serum deprivation under hypoxia via the NRF2 signaling pathway
BACKGROUND: Bone marrow mesenchymal stem cell (BMSCs) therapy is an important cell transplantation strategy in the regenerative medicine field. However, a severely ischemic microenvironment, such as nutrient depletion and hypoxia, causes a lower survival rate of transplanted BMSCs, limiting the appl...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290240/ https://www.ncbi.nlm.nih.gov/pubmed/35850702 http://dx.doi.org/10.1186/s13287-022-03016-6 |
Sumario: | BACKGROUND: Bone marrow mesenchymal stem cell (BMSCs) therapy is an important cell transplantation strategy in the regenerative medicine field. However, a severely ischemic microenvironment, such as nutrient depletion and hypoxia, causes a lower survival rate of transplanted BMSCs, limiting the application of BMSCs. Therefore, improving BMSCs viability in adverse microenvironments is an important means to improve the effectiveness of BMSCs therapy. OBJECTIVE: To illustrate the protective effect of andrographolide (AG) against glucose and serum deprivation under hypoxia (1% O(2)) (GSDH)-induced cell injury in BMSCs and investigate the possible underlying mechanisms. METHODS: An in vitro primary rat BMSCs cell injury model was established by GSDH, and cellular viability, proliferation and apoptosis were observed after AG treatment under GSDH. Reactive oxygen species levels and oxidative stress-related genes and proteins were measured by flow cytometry, RT-qPCR and Western blotting. Mitochondrial morphology, function and number were further assessed by laser confocal microscopy and flow cytometry. RESULTS: AG protected BMSCs against GSDH-induced cell injury, as indicated by increases in cell viability and proliferation and mitochondrial number and decreases in apoptosis and oxidative stress. The metabolic status of BMSCs was changed from glycolysis to oxidative phosphorylation to increase the ATP supply. We further observed that the NRF2 pathway was activated by AG, and treatment of BMSCs with a specific NRF2 inhibitor (ML385) blocked the protective effect of AG. CONCLUSION: Our results suggest that AG is a promising agent to improve the therapeutic effect of BMSCs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-022-03016-6. |
---|