Cargando…
Recognition of the TDP-43 nuclear localization signal by importin α1/β
Cytoplasmic mislocalization of the TAR-DNA binding protein of 43 kDa (TDP-43) leads to large, insoluble aggregates that are a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we study how importin α1/β recognizes TDP-43 bipartite nuclear localization signal (NLS). We find...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290431/ https://www.ncbi.nlm.nih.gov/pubmed/35767952 http://dx.doi.org/10.1016/j.celrep.2022.111007 |
Sumario: | Cytoplasmic mislocalization of the TAR-DNA binding protein of 43 kDa (TDP-43) leads to large, insoluble aggregates that are a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we study how importin α1/β recognizes TDP-43 bipartite nuclear localization signal (NLS). We find that the NLS makes extensive contacts with importin α1, especially at the minor NLS-binding site. NLS binding results in steric clashes with the C terminus of importin α1 that disrupts the TDP-43 N-terminal domain (NTD) dimerization interface. A putative phosphorylation site in the proximity of TDP-43 R83 at the minor NLS site destabilizes binding to importins by reducing the NLS backbone dynamics. Based on these data, we explain the pathogenic role of several post-translational modifications and mutations in the proximity of TDP-43 minor NLS site that are linked to disease and shed light on the chaperone activity of importin α1/β. |
---|