Cargando…

IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis

IRE1 is an important central regulator of unfolded protein response (UPR) in the endoplasmic reticulum (ER) because of its ability to regulate cell fate as a function of stress sensing. When misfolded proteins accumulated in chondrocytes ER, IRE1 disintegrates with BIP/GRP78 and undergoes dimer/olig...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Rongxiang, Hui, Zhang, Wei, Sun, Li, Duan, Li, Wencui, Daping, Wang, Alahdal, Murad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291116/
https://www.ncbi.nlm.nih.gov/pubmed/34297411
http://dx.doi.org/10.1002/jcp.30537
Descripción
Sumario:IRE1 is an important central regulator of unfolded protein response (UPR) in the endoplasmic reticulum (ER) because of its ability to regulate cell fate as a function of stress sensing. When misfolded proteins accumulated in chondrocytes ER, IRE1 disintegrates with BIP/GRP78 and undergoes dimer/oligomerization and transautophosphorylation. These two processes are mediated through an enzyme activity of IRE1 to activate endoribonuclease and generates XBP1 by unconventional splicing of XBP1 messenger RNA. Thereby promoting the transcription of UPR target genes and apoptosis. The deficiency of inositol‐requiring enzyme 1α (IRE1α) in chondrocytes downregulates prosurvival factors XBP1S and Bcl‐2, which enhances the apoptosis of chondrocytes through increasing proapoptotic factors caspase‐3, p‐JNK, and CHOP. Meanwhile, the activation of IRE1α increases chondrocyte viability and reduces cell apoptosis. However, the understanding of IRE1 responses and cell death fate remains controversial. This review provides updated data about the role IRE1 plays in chondrocytes and new insights about the potential efficacy of IRE1 regulation in cartilage repair and osteoarthritis treatment.