Cargando…

The Study Variety of Conformal Kinematics

We introduce the Study variety of conformal kinematics and investigate some of its properties. The Study variety is a projective variety of dimension ten and degree twelve in real projective space of dimension 15, and it generalizes the well-known Study quadric model of rigid body kinematics. Despit...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalkan, Bahar, Li, Zijia, Schröcker, Hans-Peter, Siegele, Johannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293847/
https://www.ncbi.nlm.nih.gov/pubmed/35873187
http://dx.doi.org/10.1007/s00006-022-01227-x
Descripción
Sumario:We introduce the Study variety of conformal kinematics and investigate some of its properties. The Study variety is a projective variety of dimension ten and degree twelve in real projective space of dimension 15, and it generalizes the well-known Study quadric model of rigid body kinematics. Despite its high dimension, co-dimension, and degree it is amenable to concrete calculations via conformal geometric algebra (CGA) associated to three-dimensional Euclidean space. Calculations are facilitated by a four quaternion representation which extends the dual quaternion description of rigid body kinematics. In particular, we study straight lines on the Study variety. It turns out that they are related to a class of one-parametric conformal motions introduced by Dorst in (Math Comput Sci 10:97–113, 2016, 10.1007/s11786-016-0250-8). Similar to rigid body kinematics, straight lines (that is, Dorst’s motions) are important for the decomposition of rational conformal motions into lower degree motions via the factorization of certain polynomials with coefficients in CGA.