Cargando…
Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis
BACKGROUND: This study primarily explored the role of paeonol in doxorubicin (DOX)-induced chronic heart failure (CHF), considering the cardioprotective effect of paeonol on an epirubicin-induced cardiac injury. METHODS: DOX-induced CHF-modeled rats were treated with paeonol. Cardiac function and my...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294229/ https://www.ncbi.nlm.nih.gov/pubmed/35865382 http://dx.doi.org/10.3389/fcvm.2022.695004 |
_version_ | 1784749803639406592 |
---|---|
author | Chen, Cong Liu, Shuhong Cao, Gaozhen Hu, Yang Wang, Run Wu, Min Liu, Mingya Yiu, Kai Hang |
author_facet | Chen, Cong Liu, Shuhong Cao, Gaozhen Hu, Yang Wang, Run Wu, Min Liu, Mingya Yiu, Kai Hang |
author_sort | Chen, Cong |
collection | PubMed |
description | BACKGROUND: This study primarily explored the role of paeonol in doxorubicin (DOX)-induced chronic heart failure (CHF), considering the cardioprotective effect of paeonol on an epirubicin-induced cardiac injury. METHODS: DOX-induced CHF-modeled rats were treated with paeonol. Cardiac function and myocardial damage in rats were evaluated by using the multifunction instrument, and the histopathology, apoptosis, and the expression of miR-21-5p and S-phase kinase-associated protein 2 (SKP2) in myocardium were detected. The target gene of miR-21-5p was confirmed by a dual-luciferase reporter assay. After the required transfection or paeonol treatment, the viability, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of the DOX-induced cardiomyocytes were determined. Reverse-transcription quantitative-PCR (RT-qPCR) and Western blot were performed to quantify the expressions of miR-21-5p, SKP2, and apoptosis-related factors. RESULTS: Paeonol improved cardiac function and also ameliorated the cardiac damage of CHF-modeled rats, where the downregulation of abnormally elevated myocardial damage markers, including brain natriuretic peptide, lactate dehydrogenase, renin, angiotensin II, aldosterone, and endothelin 1, was observed. Paeonol alleviated the histopathological injury and suppressed the apoptosis in CHF-modeled rats, inhibited miR-21-5p expression, and upregulated SKP2 expression in vitro and in vivo. miR-21-5p targeted SKP2. Paeonol and SKP2 increased the viability and MMP, but reduced apoptosis and ROS in the DOX-induced cardiomyocytes. miR-21-5p exerted effects opposite to PAE and SKP2, and it downregulated the expression of Bcl-2 and mitochondrion-Cytochrome c (Cyt c) and upregulated the expression of Bax, C-caspase-3, and cytoplasm-Cyt c. miR-21-5p reversed the effects of paeonol, and its effects were further reversed by SKP2. CONCLUSION: Paeonol shows a cardioprotective effect on DOX-induced CHF via regulating the miR-21-5p/SKP2 axis. |
format | Online Article Text |
id | pubmed-9294229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92942292022-07-20 Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis Chen, Cong Liu, Shuhong Cao, Gaozhen Hu, Yang Wang, Run Wu, Min Liu, Mingya Yiu, Kai Hang Front Cardiovasc Med Cardiovascular Medicine BACKGROUND: This study primarily explored the role of paeonol in doxorubicin (DOX)-induced chronic heart failure (CHF), considering the cardioprotective effect of paeonol on an epirubicin-induced cardiac injury. METHODS: DOX-induced CHF-modeled rats were treated with paeonol. Cardiac function and myocardial damage in rats were evaluated by using the multifunction instrument, and the histopathology, apoptosis, and the expression of miR-21-5p and S-phase kinase-associated protein 2 (SKP2) in myocardium were detected. The target gene of miR-21-5p was confirmed by a dual-luciferase reporter assay. After the required transfection or paeonol treatment, the viability, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of the DOX-induced cardiomyocytes were determined. Reverse-transcription quantitative-PCR (RT-qPCR) and Western blot were performed to quantify the expressions of miR-21-5p, SKP2, and apoptosis-related factors. RESULTS: Paeonol improved cardiac function and also ameliorated the cardiac damage of CHF-modeled rats, where the downregulation of abnormally elevated myocardial damage markers, including brain natriuretic peptide, lactate dehydrogenase, renin, angiotensin II, aldosterone, and endothelin 1, was observed. Paeonol alleviated the histopathological injury and suppressed the apoptosis in CHF-modeled rats, inhibited miR-21-5p expression, and upregulated SKP2 expression in vitro and in vivo. miR-21-5p targeted SKP2. Paeonol and SKP2 increased the viability and MMP, but reduced apoptosis and ROS in the DOX-induced cardiomyocytes. miR-21-5p exerted effects opposite to PAE and SKP2, and it downregulated the expression of Bcl-2 and mitochondrion-Cytochrome c (Cyt c) and upregulated the expression of Bax, C-caspase-3, and cytoplasm-Cyt c. miR-21-5p reversed the effects of paeonol, and its effects were further reversed by SKP2. CONCLUSION: Paeonol shows a cardioprotective effect on DOX-induced CHF via regulating the miR-21-5p/SKP2 axis. Frontiers Media S.A. 2022-07-05 /pmc/articles/PMC9294229/ /pubmed/35865382 http://dx.doi.org/10.3389/fcvm.2022.695004 Text en Copyright © 2022 Chen, Liu, Cao, Hu, Wang, Wu, Liu and Yiu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cardiovascular Medicine Chen, Cong Liu, Shuhong Cao, Gaozhen Hu, Yang Wang, Run Wu, Min Liu, Mingya Yiu, Kai Hang Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis |
title | Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis |
title_full | Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis |
title_fullStr | Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis |
title_full_unstemmed | Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis |
title_short | Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis |
title_sort | cardioprotective effect of paeonol on chronic heart failure induced by doxorubicin via regulating the mir-21-5p/s-phase kinase-associated protein 2 axis |
topic | Cardiovascular Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294229/ https://www.ncbi.nlm.nih.gov/pubmed/35865382 http://dx.doi.org/10.3389/fcvm.2022.695004 |
work_keys_str_mv | AT chencong cardioprotectiveeffectofpaeonolonchronicheartfailureinducedbydoxorubicinviaregulatingthemir215psphasekinaseassociatedprotein2axis AT liushuhong cardioprotectiveeffectofpaeonolonchronicheartfailureinducedbydoxorubicinviaregulatingthemir215psphasekinaseassociatedprotein2axis AT caogaozhen cardioprotectiveeffectofpaeonolonchronicheartfailureinducedbydoxorubicinviaregulatingthemir215psphasekinaseassociatedprotein2axis AT huyang cardioprotectiveeffectofpaeonolonchronicheartfailureinducedbydoxorubicinviaregulatingthemir215psphasekinaseassociatedprotein2axis AT wangrun cardioprotectiveeffectofpaeonolonchronicheartfailureinducedbydoxorubicinviaregulatingthemir215psphasekinaseassociatedprotein2axis AT wumin cardioprotectiveeffectofpaeonolonchronicheartfailureinducedbydoxorubicinviaregulatingthemir215psphasekinaseassociatedprotein2axis AT liumingya cardioprotectiveeffectofpaeonolonchronicheartfailureinducedbydoxorubicinviaregulatingthemir215psphasekinaseassociatedprotein2axis AT yiukaihang cardioprotectiveeffectofpaeonolonchronicheartfailureinducedbydoxorubicinviaregulatingthemir215psphasekinaseassociatedprotein2axis |