Cargando…
Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs
Mutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases and develop therapeutics against them. With improved deep learning techniques, such as RoseTTAFold and AlphaFold, we can predict the structure of proteins even in the abse...
Autores principales: | Sen, Neeladri, Anishchenko, Ivan, Bordin, Nicola, Sillitoe, Ian, Velankar, Sameer, Baker, David, Orengo, Christine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294430/ https://www.ncbi.nlm.nih.gov/pubmed/35641150 http://dx.doi.org/10.1093/bib/bbac187 |
Ejemplares similares
-
Explainability in transformer models for functional genomics
por: Clauwaert, Jim, et al.
Publicado: (2021) -
Prediction of RNA secondary structure including pseudoknots for long sequences
por: Sato, Kengo, et al.
Publicado: (2021) -
APPTEST is a novel protocol for the automatic prediction of peptide tertiary structures
por: Timmons, Patrick Brendan, et al.
Publicado: (2021) -
HLA3D: an integrated structure-based computational toolkit for immunotherapy
por: Li, Xingyu, et al.
Publicado: (2022) -
Systematic investigation of the homology sequences around the human fusion gene breakpoints in pan-cancer – bioinformatics study for a potential link to MMEJ
por: Kim, Pora, et al.
Publicado: (2023)