Cargando…
Multi-head attention-based U-Nets for predicting protein domain boundaries using 1D sequence features and 2D distance maps
The information about the domain architecture of proteins is useful for studying protein structure and function. However, accurate prediction of protein domain boundaries (i.e., sequence regions separating two domains) from sequence remains a significant challenge. In this work, we develop a deep le...
Autores principales: | Mahmud, Sajid, Guo, Zhiye, Quadir, Farhan, Liu, Jian, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295499/ https://www.ncbi.nlm.nih.gov/pubmed/35854211 http://dx.doi.org/10.1186/s12859-022-04829-1 |
Ejemplares similares
-
Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks
por: Guo, Zhiye, et al.
Publicado: (2022) -
Distance‐based reconstruction of protein quaternary structures from inter‐chain contacts
por: Soltanikazemi, Elham, et al.
Publicado: (2021) -
CACPU-Net: Channel attention U-net constrained by point features for crop type mapping
por: Bian, Yuan, et al.
Publicado: (2023) -
DISTEMA: distance map-based estimation of single protein model accuracy with attentive 2D convolutional neural network
por: Chen, Xiao, et al.
Publicado: (2022) -
DeepComplex: A Web Server of Predicting Protein Complex Structures by Deep Learning Inter-chain Contact Prediction and Distance-Based Modelling
por: Quadir, Farhan, et al.
Publicado: (2021)