Cargando…

Discovery of a lectin domain that regulates enzyme activity in mouse N-acetylglucosaminyltransferase-IVa (MGAT4A)

N-Glycosylation is a common post-translational modification, and the number of GlcNAc branches in N-glycans impacts glycoprotein functions. N-Acetylglucosaminyltransferase-IVa (GnT-IVa, also designated as MGAT4A) forms a β1-4 GlcNAc branch on the α1-3 mannose arm in N-glycans. Downregulation or loss...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagae, Masamichi, Hirata, Tetsuya, Tateno, Hiroaki, Mishra, Sushil K., Manabe, Noriyoshi, Osada, Naoko, Tokoro, Yuko, Yamaguchi, Yoshiki, Doerksen, Robert J., Shimizu, Toshiyuki, Kizuka, Yasuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296478/
https://www.ncbi.nlm.nih.gov/pubmed/35854001
http://dx.doi.org/10.1038/s42003-022-03661-w
Descripción
Sumario:N-Glycosylation is a common post-translational modification, and the number of GlcNAc branches in N-glycans impacts glycoprotein functions. N-Acetylglucosaminyltransferase-IVa (GnT-IVa, also designated as MGAT4A) forms a β1-4 GlcNAc branch on the α1-3 mannose arm in N-glycans. Downregulation or loss of GnT-IVa causes diabetic phenotypes by dysregulating glucose transporter-2 in pancreatic β-cells. Despite the physiological importance of GnT-IVa, its structure and catalytic mechanism are poorly understood. Here, we identify the lectin domain in mouse GnT-IVa’s C-terminal region. The crystal structure of the lectin domain shows structural similarity to a bacterial GlcNAc-binding lectin. Comprehensive glycan binding assay using 157 glycans and solution NMR reveal that the GnT-IVa lectin domain selectively interacts with the product N-glycans having a β1-4 GlcNAc branch. Point mutation of the residue critical to sugar recognition impairs the enzymatic activity, suggesting that the lectin domain is a regulatory subunit for efficient catalytic reaction. Our findings provide insights into how branching structures of N-glycans are biosynthesized.