Cargando…
Strong and Specific Recognition of CAG/CTG Repeat DNA (5’‐dWGCWGCW‐3’) by a Cyclic Pyrrole‐Imidazole Polyamide
Abnormally expanded CAG/CTG repeat DNA sequences lead to a variety of neurological diseases, such as Huntington's disease. Here, we synthesized a cyclic pyrrole‐imidazole polyamide (cPIP), which can bind to the minor groove of the CAG/CTG DNA sequence. The double‐stranded DNA melting temperatur...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298716/ https://www.ncbi.nlm.nih.gov/pubmed/34796607 http://dx.doi.org/10.1002/cbic.202100533 |
Sumario: | Abnormally expanded CAG/CTG repeat DNA sequences lead to a variety of neurological diseases, such as Huntington's disease. Here, we synthesized a cyclic pyrrole‐imidazole polyamide (cPIP), which can bind to the minor groove of the CAG/CTG DNA sequence. The double‐stranded DNA melting temperature (T (m)) and surface plasmon resonance assays revealed the high binding affinity of the cPIP. In addition, next‐generation sequencing showed that the cPIP had high specificity for its target DNA sequence. |
---|