Cargando…
Using fractional polynomials and restricted cubic splines to model non‐proportional hazards or time‐varying covariate effects in the Cox regression model
The Cox proportional hazards model is used extensively in clinical and epidemiological research. A key assumption of this model is that of proportional hazards. A variable satisfies the proportional hazards assumption if the effect of that variable on the hazard function is constant over time. When...
Autores principales: | Austin, Peter C., Fang, Jiming, Lee, Douglas S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299077/ https://www.ncbi.nlm.nih.gov/pubmed/34806210 http://dx.doi.org/10.1002/sim.9259 |
Ejemplares similares
-
Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers
por: Austin, Peter C., et al.
Publicado: (2013) -
Intermediate and advanced topics in multilevel logistic regression analysis
por: Austin, Peter C., et al.
Publicado: (2017) -
Individual participant data meta‐analysis to examine interactions between treatment effect and participant‐level covariates: Statistical recommendations for conduct and planning
por: Riley, Richard D., et al.
Publicado: (2020) -
Generating survival times to simulate Cox proportional hazards models with time-varying covariates
por: Austin, Peter C
Publicado: (2012) -
The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments
por: Austin, Peter C
Publicado: (2014)